Ecuaciones Parametricas
Enviado por javierdehl11 • 9 de Mayo de 2015 • 2.122 Palabras (9 Páginas) • 213 Visitas
Ecuaciones paramétricas y simétricas
(1,-2,4) v=<2,4,-4>
X= 1+2t
Y= -2 +4t (x-1)/2=(y+2)/4=(z-4)/(-4)
Z= 4 -4t
(-2,1,0) (1,3,5)
V = <3,2,5> (x+2)/3=(y-1)/2=z/5
X= -2 +3t
Y= 1 +2t
Z= +5t
(0,0,0,) v=< 1,2,3 >
X= t x/1=y/2=z/3
Y= 2t
Z= 3t
( -3,5,4) (x-1)/3=(y+1)/(-2)=z-3
X= -3 +3t
Y= 5-2t (x+3)/3=(y-5)/(-2)=(z-4)/(-3)
Z= 4-3t
(-2,0,3) v=<2i,+4j -2k>
X= -2+2t
Y= +4t (x+2)/2=y/4=(z-3)/2
Z= 3-2t
(-3,0,2) v=<6j+3k>
X= -3
Y= +6t x+3=y/6=(z-2)/3
Z= 2+3t
(1,01,) X= 3+3t
Y= 5-2t
Z = -7+t
X= 1+3t
Y= 0-2t (x-1)/3=y/(-2)=(z-1)/1
Z = 1+t
(2,0,1) (1,4,-3)
V= < -1,4,-5>
X= 2- t (x-2)/(-1)=y/4=(z+5)/(-5)
Y= 0+4t
Z = 2-5t
(2,3,0) (10,8,12)
V= <8,5,12>
X= 2+10t (x-2)/10=(y-3)/8=z/12
Y= 3+8t
Z = 0+12t
(0,0,25) (10,10,0)
V=<10,10,-25>
X=0+10t
Y=0+10t x/10=y/10=(z-25)/(-25)
Z=25-25t
Ecuación del plano
Hallar la ecuación del plano que contiene a los puntos
(2,1,1), (0,4,1), (-2,1,4)
PQ V= <-2,3,0>
PR V=<-4,0,3>
I J K (X-2)9 + (Y-1)6 + (Z-1)12=0
-2 3 0 =9i+6J+12K 9X – 18 + 6Y – 6 + 12Z - 12=0
-4 0 3 9X + 6Y + 12Z = 36
(0,0,0) (1,2,3) (-2,3,3)
QR V= <-3,1,0>
QP V=< -1, -2, -3 >
I J K (X-1)(-3) + (Y-2)(-9) + (Z-3)7 =0
-3 1 0 = -3i - 9J + 7K -3X + 3 - 9Y + 18 + 7Z – 21 =0
-1 -2 -3 -3X - 9Y + 7Z = 0
(2,3,-2) (3,4,2) (1,-1,0)
QR V= <1,1,-4>
QP V=< -1, -4, -2 >
I J K (X-2)(-18) + (Y-3)(6) + (Z-(-2))(-3) =0
1 1 -4 = -18i + 6J - 3K -18X + 36 + 6Y - 18 - 3Z – 6 =0
-1 -4 -2 -18X + 6Y
...