Educacion
Enviado por roogel • 8 de Abril de 2013 • 617 Palabras (3 Páginas) • 232 Visitas
Momento angular de una masa puntual
El momento angular de una partícula con respecto al punto es el producto vectorial de su momento lineal por el vector .
En mecánica newtoniana, el momento angular de una partícula o masa puntual con respecto a un punto O del espacio se define como el momento de su cantidad de movimiento con respecto a ese punto. Normalmente se designa mediante el símbolo . Siendo el vector que une el punto O con la posición de la masa puntual, será
El vector es perpendicular al plano que contiene y , en la dirección indicada por la regla del producto vectorial o regla de la mano derecha y su módulo o intensidad es:
esto es, el producto del módulo del momento lineal por su brazo ( en el dibujo), definido éste como la distancia del punto respecto al que se toma el momento a la recta que contiene la velocidad de la partícula.
Ejemplo
La masa gira tenida por un hilo que puede deslizar a través de un tubito delgado. Tirando del hilo se cambia el radio de giro sin modificar el momento angular.
En el dibujo de la derecha tenemos una masa que gira, tenida por un hilo de masa despreciable que pasa por un tubito fino. Suponemos el conjunto sin rozamientos y no tenemos en cuenta la gravedad.
La fuerza que el hilo ejerce sobre la masa es radial y no puede ejercer un momento sobre la masa. Si tiramos del hilo, el radio de giro disminuirá. Como, en ausencia de momentos externos, el momento angular se conserva, la velocidad de rotación de la masa debe aumentar.
Un tirón sobre el hilo comunica una velocidad radial a la masa. La nueva velocidad es la suma vectorial de la velocidad precedente y
En el dibujo siguiente aparece la masa que gira con un radio en el momento en el cual se da un tirón del hilo. El término correcto del "tirón" física es un impulso, es decir una fuerza aplicada durante un instante de tiempo. Ese impulso comunica una velocidad radial a la masa. La nueva velocidad será la suma vectorial de la velocidad precedente con . La dirección de esa nueva velocidad no es tangencial, sino entrante. Cuando la masa pasa por el punto más próximo del centro, a una distancia , cobramos el hilo suelto y la masa continuará a girar con el nuevo radio . En el dibujo, el triángulo amarillo y el triángulo rosado son semejantes. Lo cual nos permite escribir:
o sea:
Y, si multiplicamos por la masa , obtenemos que el momento angular se ha conservado, como lo esperábamos:
Vemos como el momento angular se ha conservado: Para reducir el radio de giro hay que comunicar una velocidad radial, la cual aumenta la velocidad total de la masa.
También se puede hacer el experimento en el otro sentido. Si se suelta el hilo, la masa sigue
...