Estadística Descriptiva
Enviado por mayo29 • 21 de Noviembre de 2012 • 1.235 Palabras (5 Páginas) • 395 Visitas
Moda: En estadística, la moda es el valor con una mayor frecuencia en una distribución de datos. Hablaremos de una distribución bimodal de los datos adquiridos en una columna cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Una distribución trimodal de los datos es en la que encontramos tres modas. Si todas las variables tienen la misma frecuencia diremos que no hay moda. El intervalo modal es el de mayor frecuencia absoluta. Cuando tratamos con datos agrupados antes de definir la moda, se ha de definir el intervalo modal.
Mediana: En el ámbito de la estadística, la mediana, representa el valor de la variable de posición central en un conjunto de datos ordenados. De acuerdo con esta definición el conjunto de datos menores o iguales que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana representarán el otro 50% del total de datos de la muestra. La mediana coincide con el percentil 50, con el segundo cuartil y con el quinto decil. Su cálculo no se ve afectado por valores extremos.
Media: número calculado mediante ciertas operaciones a partir de los elementos de un conjunto de números, x1, x2,…,xn, y que sirve para representar a éste. Hay distintos tipos de medias: media aritmética, media geométrica y media armónica. La media aritmética es el resultado de sumar todos los elementos del conjunto y dividir por el número de ellos.
Varianza: Se trata de una palabra impulsada por el matemático y científico inglés Ronald Fisher (1890-1962) y sirve para identificar a la media de las desviaciones cuadráticas de una variable de carácter aleatorio, considerando el valor medio de ésta.
Desviación estándar: La desviación estándar (o desviación típica) es una medida de dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva. Es una medida (cuadrática) de lo que se apartan los datos de su media, y por tanto, se mide en las mismas unidades que la variable. Para conocer con detalle un conjunto de datos, no basta con conocer las medidas de tendencia central, sino que necesitamos conocer también la desviación que representan los datos en su distribución, con objeto de tener una visión de los mismos más acorde con la realidad a la hora de describirlos e interpretarlos para la toma de decisiones.
Frecuencia absoluta: Frecuencia absoluta Es el promedio de una suma predeterminada y además consiste en saber cual es el número o símbolo de mayor equivalencia. (ni) de una variable estadística Xi, es el número de veces que este valor aparece en el estudio. A mayor tamaño de la muestra aumentará el tamaño de la frecuencia absoluta; es decir, la suma total de todas las frecuencias absolutas debe dar el total de la muestra estudiada (N).
Frecuencia absoluta acumulada: (Ni), es el número de veces ni en la muestra N con un valor igual o menor al de la variable. La última frecuencia absoluta acumulada deberá ser igual a N.
Frecuencia relativa: (fi), es el cociente entre la frecuencia absoluta y el tamaño de la muestra (N). Es decir, siendo el fi para todo el conjunto i. Se presenta en una tabla o nube de puntos en una distribución de frecuencias. Si multiplicamos la frecuencia relativa por 100 obtendremos el porcentaje o tanto por ciento (pi) que presentan esta característica respecto al total de N, es decir el 100% del conjunto.
Frecuencia relativa acumulada: Es el cociente entre la frecuencia absoluta acumulada y el número total de datos, N. Es decir, Con la frecuencia relativa acumulada por 100 se obtiene el porcentaje acumulado (Pi)), que al igual que Fi deberá de resultar al final el 100% de N. La representación gráfica de la distribución de frecuencias acumuladas se denomina ojiva. En ella el eje de las abscisas corresponde a los límites
...