Geometria Y Su Importancia
Enviado por Yeniree • 17 de Agosto de 2014 • 1.810 Palabras (8 Páginas) • 318 Visitas
LA GEOMETRIA
Es una rama de las matemáticas que se ocupa del estudio de las propiedades de las figuras geométricas en el plano o en el espacio como son puntos, rectas, planos,
La Importancia de la Geometría
El aprendizaje de la geometría en la escuela es de suma importancia ya que todo nuestro entorno está lleno de formas geométricas; en la vida cotidiana es indispensable el conocimiento geométrico básico para orientarse adecuadamente en el espacio, haciendo estimaciones sobre formas y distancias, para distribuir objetos en el espacio
NOCION
Punto: es el primer elemento que no está en la geometría. Se representa gráficamente por un pequeño círculo y una letra mayúscula que lo identifica. Por ejemplo: A, B Y C.
Recta: es una porción de la recta con principio y con fin, es decir sabemos dónde empieza y donde termina por ende lo podemos medir. No tiene ancho ni altura ni grosor. ________________
Plano: Es el ente ideal que solo posee dos dimensiones y contiene infinitos puntos y rectas, se representa con una letra mayúscula ubicada en una de las esquinas.
HISTORIA DE LA GEOMETRIA
La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza.
El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.
Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo de radio unidad un valor aproximado de 3'1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramos rudimentos de trigonometría y nociones básicas de semejanza de triángulos.
También se tienen nociones geométricas en la civilización mesopotámica, constituyendo los problemas de medida el bloque central en este campo: área del cuadrado, del círculo, volúmenes de determinados cuerpos, semejanza de figuras, e incluso hay autores que afirman que esta civilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, obviamente, como principio general.
En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc...
Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes.
Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides.
Las primeras teorías matemáticas que se abstrajeron de los problemas concretos o de un conjunto de problemas de un mismo tipo, crearon las condiciones necesarias y suficientes para el reconocimiento de la autonomía y especificidad de las matemáticas.
El carácter abstracto del objeto de las matemáticas y los métodos de demostración matemática establecidos, fueron las principales causas para que esta ciencia se comenzara a exponer como una ciencia deductiva, que a partir de unos axiomas, presenta una sucesión lógica de teoremas. Las obras en las cuales, en aquella época se exponían los primeros sistemas matemáticos se denominaban "Elementos".
Se encuentran elementos pertenecientes a muchos autores, sin embargo todos ellos han quedado relegados a un segundo plano tras la obra matematica más impresionante de la historia: Los Elementos de Euclides. "Los Elementos", como denominaremos a esta obra a partir de ahora, están constituidos por trece libros, cada uno de los cuales consta de una sucesión de teoremas. A veces se añaden otros dos, los libros 14 y 15 que pertenecen a otros autores pero por su contenido, están próximos al último libro de Euclides.
En "Los Elementos" de Euclides se recogen una serie de axiomas o postulados que sirvieron de base para el posterior desarrollo de la geometría. Es de especial interés, por la controversia que originó en épocas posteriores el
...