Matematica
Enviado por clauGrande • 9 de Diciembre de 2012 • 663 Palabras (3 Páginas) • 431 Visitas
Tarea de Matemática II.
Hallar dy/dx por derivación implícita si :
X2y3-2xy+y2=x3+1
X2.3y2dy/dx+y3.2x-[2xdy/dx+y.2]+2ydy/dx=3x2
3x2y2dy/dx+2xy3-2xdy/dx-2y+2ydy/dx=3x2
dy/dx [3x2y2-2x+2y] = 3x2-2xy3+2y
dy/dx = (〖3x〗^2-〖2xy〗^3+2y )/(〖3x〗^2 y^2-2x+2y)
2xy4+5y2-6x = y+6
2x.4y3dy/dx+y4.2+10dy/dx -6= ydy/dx
8xy3dy/dx+2y4+10dy/dx-6= ydy/dx
dy/dx [8xy3+10-1]= -2y4+6
dy/dx= (〖-2y〗^4+6 )/(8xy^3+10-1)
4x3y5-6xy+x4=x2
4x3.5y4dy/dx+y5.12x2-[6xdy/dx+y.6]+4x3=2x
20x3y4dy/dx+12x2y5-6xdy/dx -6y+4x3=2x
dy/dx [20x3y4-6x]=2x-12x2y5+6y-4x3
dy/dx= (〖2x-12x^2 y〗^5+6y- 〖4x〗^3)/(20x^3 y^4-6x)
5y+6x3-xy=y2+x
5dy/dx+18x2-[xdy/dx+y.1]=2ydy/dx +1
5dy/dx+18x2- xdy/dx-y=2ydy/dx +1
dy/dx [5-x-2y]=1-18x2+y
dy/dx = (〖1-18x^2〗^ + y)/(5-x-2y)
Hallar la diferencia dy si:
Y=4x3+2x2+6x+10
dy= (4x3+2x2+6x+10) (12x2+4x+6)dx
Y = cos (3x2)
dy = -sen (3x2) (6x) dx
Y = sen (6x3)
dy = cos (6x3) (18x2) dx
Y = 5x4+6x3+2y2-2y+1
dy = (5x4+6x3+2y2-2y+1) (20x3+18x2+4y-2) dx
Y = -sen (x5)
dy = cos (x5) (5x4) dx
Hallar máximos y mínimos para las siguientes funciones:
Y= 2x3+x2 S = [ -1, 6 ]
C1=-1 C2=6 C3=0 C4= -1/3
6X2+2X
Igualando a cero
6x2+2x=0
2x[3x+1]=0
X=[3x+1]= 0/2 =0
X=[3x+1]= 0
X=0 ^ 3x+1=0 3x=0-1 x=0 (-1)/3 X= (-1)/3
f(-1)=2(-1)3+(-1)2
f(-1)=2(-1)+1
f(-1)=-2+1 =-1
f(6)= 2(6)3+(6)2
f(6)=2(216)+36
f(6)=468
f(0)=2(0)3+(0)2= 0
f((-1)/3 )= 2((-1)/3 )3+((-1)/3 )2
f((-1)/3 )=2((-1)/27)+ 1/9
f((-1)/3 )= (-2)/27 + 1/9 = -0.074+0.111 = 0.037
f(x) tiene un máximo en f(c)=468 que lo alcanza cuando C =6
f(x) tiene un minimo en f(c)= -1 que lo alcanza cuando C = -1
Y= x3-2x2+6 S= [ 0, 5 ]
C1= 0 C2 = 5 C3 = 0 C4 = 4/3
F'(x) = 3x2 – 4x
Igualando a cero
3x2 – 4x = 0
X (3x – 4)= 0
x = 0 ^ 3x – 4 = 0
3x = 0 + 4
x = 4/3
F (0) = 03 – 2(0)2 + 6 = 6
F (5) = 53 – 2(5)2 + 6
=125 – 2 (25) + 6
= 125 – 50 + 6
= 81
F (0) = 03 – 2(0)2 + 6 = 6
F (4/3) = (4/3)3 – 2(4/3)2
...