PRUEBAS DE BONDAD DE AJUSTE Y PRUEBAS NO PARAMETRICAS
Enviado por ivolop • 28 de Abril de 2014 • 879 Palabras (4 Páginas) • 1.220 Visitas
UNIDAD 4
PRUEBAS DE BONDAD DE AJUSTE Y PRUEBAS NO PARAMETRICAS
PRUEBAS DE BONDAD DE AJUSTE
Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.
Sea X: variable aleatoria poblacional
f0(x) la distribución (o densidad) de probabilidad especificada o supuesta para X
Se desea probar la hipótesis:
Ho: f(x) = f0(x)
En contraste con la hipótesis alterna:
Ha: f(x) no= f0(x) (negación de Ho)
PRUEBA JI-CUADRADO
Esta prueba es aplicable para variables aleatorias discretas o continuas.
Sea una muestra aleatoria de tamaño n tomada de una población con una distribución especificada f0(x) que es de interés verificar.
Suponer que las observaciones de la muestra están agrupadas en k clases, siendo oi la cantidad de observaciones en cada clase i = 1, 2, ..., k
Con el modelo especificado f0(x) se puede calcular la probabilidad pi que un dato cualquiera pertenezca a una clase i.
Con este valor de probabilidad se puede encontrar la frecuencia esperada ei para la clase i, es decir, la cantidad de datos que según el modelo especificado deberían estar incluidos en la clase i:
ei= pi n, i = 1, 2, ..., k
Tenemos entonces dos valores de frecuencia para cada clase i
oi: frecuencia observada (corresponde a los datos de la muestra)
ei: frecuencia esperada (corresponde al modelo propuesto)
La teoría estadística demuestra que la siguiente variable es apropiada para realizar una prueba de
bondad de ajuste:
Definición
Estadístico para la prueba de bondad de ajuste Ji-cuadrado
χ2= ∑=(Oi-ei)2/ ei distribución Ji-cuadrado con ν=k–r–1 grados de libertad
donde r es la cantidad de parámetros de la distribución que deben estimarse a partir de la muestra
Es una condición necesaria para aplicar esta prueba que ∀i, ei ≥ 5 .
Dado un nivel de significancia α se define un valor crítico χ2a para el rechazo de la hipótesis propuesta Ho: f(x) = f0(x).
Si las frecuencias observadas no difieren significativamente de las frecuencias esperadas calculadas con el modelo propuesto, entonces el valor de estadístico de prueba χ2 será cercano a cero, pero si estas diferencias son significativas, entonces el valor del estadístico χ2 estará en la región de rechazo de Ho2 2 H0 rechazo ⇔ χ > χα :
Ejemplo
Se ha tomado una muestra aleatoria de 40 baterías y se ha registrado su duración en años. Estos resultados se los ha agrupado en 7 clases en el siguiente
...