Tasa de cambio y criterio de la primera derivada
Enviado por JuanZPU • 10 de Febrero de 2016 • Informe • 4.251 Palabras (18 Páginas) • 206 Visitas
[pic 3] [pic 4]
Matemáticas administrativas
Unidad 3: Cálculo diferencial y sus aplicaciones.
Actividad 1: Tasa de cambio y criterio de la primera derivada.
Martín Gabilondo Sagasta GAP-GMAD-1501S-B1-004[pic 5]
www.mgabilondo.blogspot.mx
26/02/2015
Imagen tomada de: http://www.porlalibre.mx/10982.html/
Actividad 1. Tasa de cambio y criterio de la primera derivada.
Propósito: Analizar la aplicación de las derivadas, y de máximos y mínimos, en situaciones propias de unidades de negocios.
Instrucciones: Lee cuidadosamente cada uno de los enunciados y contesta lo que se pregunta. Deberás incluir todos y cada uno de los procedimientos para llegar a la respuesta.
Primera parte:
La función de demanda de un producto de su empresa es 𝑝𝑝(𝑞𝑞) = 100 − 𝑞𝑞2.
Determina la tasa de cambio del precio con respecto a la cantidad demandada.
¿Qué tan rápido está cambiando el precio cuando 𝑞𝑞 = 5?
La razón de cambio de 𝑝𝑝 respecto a 𝑞𝑞 es 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑[pic 6]
𝑝𝑝′(𝑞𝑞) = −2𝑞𝑞 ∴ 𝑝𝑝′(5) = −𝟏𝟏𝟏𝟏
Esto significa que cuando se demandan 5 unidades, un incremento de una unidad
extra demandada correspondería a una disminución de $10 en el precio.
¿Cuál es el precio del producto cuando se demandan 5 unidades?
𝑝𝑝(5) = 100 − (5)2 = ⋯
… = 100 − 25 ∴ 𝒑𝒑 = 𝟕𝟕𝟕𝟕 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
Segunda parte:
Usted como fabricante de cierto producto ha determinado que el costo 𝐶𝐶 de producirlo está dado por la expresión,
𝐶𝐶(𝑞𝑞) = 0.05𝑞𝑞2 + 5𝑞𝑞 + 500
Donde 𝐶𝐶 está en miles de pesos y 𝑞𝑞 en unidades.
- Calcula el costo de producir 12 piezas.
𝐶𝐶(𝑞𝑞) = 0.05𝑞𝑞2 + 5𝑞𝑞 + 500
𝐶𝐶(12) = 0.05(12)2 + 5(12) + 500 = ⋯
… = 7.2 + 60 + 500 = 567.2 ∗ 1000 = 𝟕𝟕𝟓𝟓𝟕𝟕, 𝟐𝟐𝟏𝟏𝟏𝟏 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
- Determina la función de costo promedio y determine su valor cuando se fabrican 12 piezas.
𝐶𝐶𝐶𝐶(𝑞𝑞) =
𝐶𝐶(𝑞𝑞)
𝑞𝑞[pic 7]
𝐶𝐶𝐶𝐶(𝑞𝑞) =
0.05𝑞𝑞2 + 5𝑞𝑞 + 500
𝑞𝑞[pic 8]
→ 𝑪𝑪𝑪𝑪(𝒒𝒒) = 𝟏𝟏. 𝟏𝟏𝟕𝟕𝒒𝒒 + 𝟕𝟕 +
𝟕𝟕𝟏𝟏𝟏𝟏
𝒒𝒒[pic 9]
500 500
𝐶𝐶𝐶𝐶(12) = 0.05(12) + 5 + (12) = 0.6 + 5 + (12) = ⋯[pic 10][pic 11]
… = 0.6 + 5 + 41.66 = 47.26 ∗ 1000 = 𝟒𝟒𝟕𝟕, 𝟐𝟐𝟓𝟓𝟏𝟏 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
- Determina la función de costo marginal.
𝐶𝐶(𝑞𝑞) = 0.05𝑞𝑞2 + 5𝑞𝑞 + 500
Derivando, tenemos:
𝐶𝐶′(𝑞𝑞) = 2(0.05)𝑞𝑞2−1 + 1(5)𝑞𝑞1−1 + 0
𝑪𝑪′(𝒒𝒒) = 𝟏𝟏. 𝟏𝟏𝒒𝒒 + 𝟕𝟕
- Calcula la cantidad de unidades que se deben fabricar para que el costo
promedio sea mínimo. Determine el valor de dicho costo promedio mínimo.
Igualamos el costo marginal con el costo promedio.
500
0.1𝑞𝑞 + 5 = 0.05𝑞𝑞 + 5 +[pic 12]
𝑞𝑞
0.1𝑞𝑞 − 0.05𝑞𝑞 + 5 − 5 =
500
𝑞𝑞[pic 13][pic 14]
→ 0.05𝑞𝑞 =
500
𝑞𝑞[pic 15]
𝑞𝑞2 = 500
0.05[pic 16]
→ 𝑞𝑞 = √10000 = 100
De aquí se puede apreciar que el nivel de producción necesario para minimizar el
costo promedio es de 100 unidades.
500
𝐶𝐶𝐶𝐶(𝑞𝑞) = 0.05(100) + 5 + (100) = ⋯[pic 17]
… = 5 + 5 + 5 = 15 ∗ 1000 = 15,000
...