ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Transformaciones Lineales


Enviado por   •  3 de Diciembre de 2013  •  Examen  •  4.213 Palabras (17 Páginas)  •  463 Visitas

Página 1 de 17

Transformaciones Lineales

Transformaciones Lineales

Desde el punto de vista de la algebra lineal, las transformaciones más importantes son aquellas que conservan las combinaciones lineales. Estas también son llamadas como transformaciones lineales o mapeos lineales. Transformación lineal es una parte esencial en la álgebra lineal. Transformaciones lineales entre dos espacios vectoriales U y V relaciona el mapeo T: U → V que satisface estas condiciones:

1). T (U1 + U2) = T (U1) + T (U2), donde U1 y U2 son vectores en U 2). T (Au) = A T (u), donde A es cualquier cifra escalar

La primera condición se conoce como la aditividad mientras que la segunda se conoce como homogeneidad. Puede ser definido como una función entre dos espacios vectoriales, la cual conserva operaciones de multiplicación escalar y suma. De acuerdo con la álgebra abstracta, son homomorfismo de espacios vectoriales .

Toda transformación que conserva combinaciones lineales es una transformación lineal. Otra propiedad evidente es que cualquier transformación lineal mapas 0 a 0: T (0) = 0. . Este sigue, por ejemplo, el hecho de que

T (x) = T (x + 0) = T (x) + T (0) Para alguna x 2 V, la cual sólo puede ocurrir si T (0) = 0.

Representar una transformación lineal en términos de una matriz es una manera ingeniosa, ya que permitirá cálculos concretos en naturaleza. En otras palabras, se puede decir que una matriz puede dar el modelo básico de estas transformaciones. Por ejemplo, si Q es una matriz de m-by-n, en ese caso, la reglaT (Au) = A T (u) representa la transformación Rn → Rm.

La transformación Id: V → V definida por Id(x) = x se llama transformación de la identidad. Esta transformación es claramente lineal.

Propiedades generales de transformaciones lineales

Suponga que V es un espacio vectorial dimensional finito sobre F, y W es otro espacio vectorial (no necesariamente de dimensión finita) sobre F. Dado una base de V, existe una transformación lineal única T: V → W tomando cualquier valor que deseamos en la base dada de V, y, además, sus valores sobre la base de V determinan unicamente la transformación lineal.

Además, sea V y W espacios vectoriales sobre F. Entonces, cada transformación lineal T: V → W es determinado únicamente por sus valores sobre una base de V. Por otra parte, si v1. . . vn es una base de V y w1, . . . ,wnsonvectores arbitrarios en W, entonces existe una transformación lineal única T: V → W tal que T (vi) = wi para cada i. En otras palabras, hay una transformación lineal única con los valores dados en una base.

Otra propiedad de transformación lineal establece que si V y W son espacios vectoriales sobre F, entonces cualquier combinación lineal de transformaciones lineales con dominio V y objetivo W también es lineal. Así, el conjunto L (V, W) de todas las transformaciones lineales T: V → W es un espacio vectorial sobre F.

Para concluir, hay dos espacios fundamentales asociados con una transformación lineal: su núcleo ker (T) y su imagen im (T). El núcleo y la imagen de una transformación lineal T corresponden con el espacio nulo y espacio de la columna de cualquier matriz que representa T.

Introduccion a Las Transformaciones Lineales

Introducción a las transformaciones lineales

La transformación lineal es una función utilizada para la asignación de un espacio vectorial a otro espacio vectorial con la ayuda de los escalares, la cual satisface la expresión f(a*x+b*y) =a*f(x)+b*f(y).

En otras palabras, se consideran 2 espacios vectoriales, V y W. Una transformación lineal es una gráfica T: V→ W que satisface dos condiciones:

1). T (v1 + v2) = T (v1) + T (v2) donde v1 y v2 son vectores en V. 2). T (xV) = x T (v) donde x es una escala

Una transformación lineal puede ser sobreyectiva o inyectiva. En el caso que, W y V tengan dimensiones idénticas, entonces T puede llegar a ser invertible, esto es, se encuentra T-1 el cual satisface la condición TT-1 = I. Asimismo, T (0) será siempre 0.

La teoría de la matriz entra en la teoría de las transformaciones lineales porque es posible representar cada transformación lineal como matriz. La multiplicación de matrices puede considerarse como el ejemplo principal que puede demostrar el concepto de transformación lineal. Una matriz A de dimensión n x m define que T (v) = Av y aquí v es representado como un vector columna. Veamos un ejemplo:

Aquí, la transformación lineal t es definida como T (x, y) = (y, −2x + 2y, x). En el caso que, V y W sean de dimensión finita, la transformación lineal está mejor representada con la multiplicación de matrices en lugar de estableciendo la base del espacio vectorial, tanto para W y V. En el caso que, W y V incluyan un producto escalar y también los espacios vectoriales correspondientes y que W y V sean ortonormales, será simple representar la matriz correspondiente como .

Mientras que w y v son de dimensión infinita, la transformación lineal puede ser continua. Por ejemplo, considera que un espacio polinómico de 1 variable sea v y T una derivada. Entonces, T (xn) = nxn-1, una no continua como xn/n = 0 mientras que T (xn)/n no converge.

El resultado de la suma de 2 o más transformaciones lineales, la multiplicación de una transformación lineal por número particular, y la multiplicación de 2 transformaciones lineales, son siempre transformaciones lineales. Una transformación lineal en la cual su identidad es descrita en el espacio euclidiano siempre es auto-adjunta en el caso de que la matriz A correspondiente sea simétrica en cualquier base ortonormal. Una transformación lineal que es auto-adjunta y se describa en una dimensión finita unitaria, el espacio (euclidiano) contiene una base ortonormal en la cual su matriz lleva una forma diagonal.

Existen dos espacios fundamentales que están asociados a una transformación lineal: su kernelker(T) y su imagen im(T). El kernel y la imagen de una transformación lineal T corresponden con el espacio nulo y el espacio de la columna de cualquier matriz que represente a T.

En un sistema lineal, el número de variables es igual al número de variables libres más el número de variables angulares, quedando una transformación lineal final T: V→ W en la identidad dim V = dimker(T) dimim(T). Si dimker(T) = 0 y dimim(T) = dimW, entonces t esta sobre y uno a uno. En este caso, esto se denomina un isomorfismo.

La Matriz De Una Transformacion Lineal

La matriz de una transformación lineal

Desde el punto de vista algebraico lineal, las transformaciones más importantes son las aquellas que conservan las combinaciones lineales. Estas son llamadas transformaciones lineales o aplicaciones lineales. Una transformación

...

Descargar como (para miembros actualizados) txt (23 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com