ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ant Malarial


Enviado por   •  9 de Abril de 2014  •  5.306 Palabras (22 Páginas)  •  171 Visitas

Página 1 de 22

Antimalarial medications, also known as antimalarials, are designed to prevent or cure malaria. Such drugs may be used for some or all of the following:

Treatment of malaria in individuals with suspected or confirmed infection

Prevention of infection in individuals visiting a malaria-endemic region who have no immunity (Malaria prophylaxis)

Routine intermittent treatment of certain groups in endemic regions (Intermittent preventive therapy)

Some antimalarial agents, particularly chloroquine and hydroxychloroquine, are also used in the treatment of rheumatoid arthritis and lupus-associated arthritis.

Current practice in treating cases of malaria is based on the concept of combination therapy, since this offers several advantages, including reduced risk of treatment failure, reduced risk of developing resistance, enhanced convenience, and reduced side-effects. Prompt parasitological confirmation by microscopy, or alternatively by rapid diagnostic tests, is recommended in all patients suspected of malaria before treatment is started.[1] Treatment solely on the basis of clinical suspicion should only be considered when a parasitological diagnosis is not accessible.[1]

It is practical to consider antimalarials by chemical structure since this is associated with important properties of each drug, such as mechanism of action.

Quinine and related agents

Quinine has a long history stretching from Peru, and the discovery of the cinchona tree, and the potential uses of its bark, to the current day and a collection of derivatives that are still frequently used in the prevention and treatment of malaria. Quinine is an alkaloid that acts as a blood schizonticidal and weak gametocide against Plasmodium vivax and Plasmodium malariae. As an alkaloid, it is accumulated in the food vacuoles of Plasmodium species, especially Plasmodium falciparum. It acts by inhibiting the hemozoin biocrystallization, thus facilitating an aggregation of cytotoxic heme. Quinine is less effective and more toxic as a blood schizonticidal agent than chloroquine; however, it is still very effective and widely used in the treatment of acute cases of severe P. falciparum. It is especially useful in areas where there is known to be a high level of resistance to chloroquine, mefloquine, and sulfa drug combinations with pyrimethamine. Quinine is also used in post-exposure treatment of individuals returning from an area where malaria is endemic.

The treatment regimen of quinine is complex and is determined largely by the parasite's level of resistance and the reason for drug therapy (i.e. acute treatment or prophylaxis). The World Health Organization recommendation for quinine is 20 mg/kg first times and 10 mg/kg 8 hr for 5days where parasites are sensitive to quinine, combined with doxycycline, tetracycline or clindamycin. Doses can be given by oral, intravenous or intramuscular routes. The recommended method depends on the urgency of treatment and the available resources (i.e. sterilised needles for IV or IM injections).

Use of quinine is characterised by a frequently experienced syndrome called cinchonism. Tinnitus (a hearing impairment), rashes, vertigo, nausea, vomiting and abdominal pain are the most common symptoms. Neurological effects are experienced in some cases due to the drug's neurotoxic properties. These actions are mediated through the interactions of quinine causing a decrease in the excitability of the motor neuron end plates. This often results in functional impairment of the eighth cranial nerve, resulting in confusion, delirium and coma. Quinine can cause hypoglycaemia through its action of stimulating insulin secretion; this occurs in therapeutic doses and therefore it is advised that glucose levels are monitored in all patients every 4–6 hours. This effect can be exaggerated in pregnancy and therefore additional care in administering and monitoring the dosage is essential. Repeated or over-dosage can result in renal failure and death through depression of the respiratory system.

Quinimax and quinidine are the two most commonly used alkaloids related to quinine in the treatment or prevention of malaria. Quinimax is a combination of four alkaloids (quinine, quinidine, cinchoine and cinchonidine). This combination has been shown in several studies to be more effective than quinine, supposedly due to a synergistic action between the four cinchona derivatives. Quinidine is a direct derivative of quinine. It is a distereoisomer, thus having similar anti-malarial properties to the parent compound. Quinidine is recommended only for the treatment of severe cases of malaria.

Warburg's Tincture was a febrifuge developed by Dr Carl Warburg in 1834, which included quinine as a key ingredient. In the 19th-century it was a well-known anti-malarial drug. Although originally sold as a secret medicine, Warburg's Tincture was highly regarded by many eminent medical professionals who considered it as being superior to quinine (e.g. Surgeon-General W. C. Maclean, Professor of Military Medicine at British Army Medical School, Netley). Warburg's Tincture appeared in Martindale: The complete drug reference from 1883 until about 1920. The formula was published in The Lancet 1875.[2]

Chloroquine

Chloroquine was, until recently, the most widely used anti-malarial. It was the original prototype from which most methods of treatment are derived. It is also the least expensive, best tested and safest of all available drugs. The emergence of drug-resistant parasitic strains is rapidly decreasing its effectiveness; however, it is still the first-line drug of choice in most sub-Saharan African countries. It is now suggested that it is used in combination with other antimalarial drugs to extend its effective usage. Popular drugs based on chloroquine phosphate (also called nivaquine) are Chloroquine FNA, Resochin and Dawaquin.

Chloroquine is a 4-aminoquinolone compound with a complicated and still unclear mechanism of action. It is believed to reach high concentrations in the vacuoles of the parasite, which, due to its alkaline nature, raises the internal pH. It controls the conversion of toxic heme to hemozoin by inhibiting the biocrystallization of hemozoin, thus poisoning the parasite through excess levels of toxicity. Other potential mechanisms through which it may act include interfering with the biosynthesis of parasitic nucleic acids and the formation of a chloroquine-haem or chloroquine-DNA complex. The most significant level of activity found is against all forms of the schizonts (with the obvious exception of chloroquine-resistant P. falciparum and P. vivax strains) and the gametocytes of P. vivax, P. malariae, P. ovale as well as the immature gametocytes of P. falciparum.

...

Descargar como (para miembros actualizados) txt (35 Kb)
Leer 21 páginas más »
Disponible sólo en Clubensayos.com