ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conicas


Enviado por   •  4 de Enero de 2014  •  Síntesis  •  617 Palabras (3 Páginas)  •  256 Visitas

Página 1 de 3

Etimología[editar · editar código]

La primera definición conocida de sección cónica surge en la Antigua Grecia, cerca del año 1000 (Menæchmus) donde las definieron como secciones «de un cono circular recto».1 Los nombres de hipérbola, parábola y elipse se deben a Apolonio de Perge. Actualmente, las secciones cónicas pueden definirse de varias maneras; estas definiciones provienen de las diversas ramas de la matemática: como la geometría analítica, la geometría proyectiva, etc.

Tipos[editar · editar código]

Perspectiva de las secciones cónicas.

Las cuatro secciones cónicas en el plano.

En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:

β < α : Hipérbola (naranja)

β = α : Parábola (azulado)

β > α : Elipse (verde)

β = 90º: Circunferencia (un caso particular de elipse) (rojo)

Si el plano pasa por el vértice del cono, se puede comprobar que:

Cuando β > α la intersección es un único punto (el vértice).

Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).

Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice.

cuando β = 90º El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).

Expresión algebraica[editar · editar código]

Partiendo de una circunferencia (e=0), al aumentar la excentricidad se obtienen elipses, parábolas e hipérbolas.

En coordenadas cartesianas, las cónicas se expresan en forma algebraica mediante ecuaciones cuadráticas de dos variables (x,y) de la forma:

ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \,

en la que, en función de los valores de los parámetros, se tendrá:

h² > ab: hipérbola.

h² = ab: parábola.

h² < ab: elipse.

a = b y h = 0: circunferencia.

Características[editar · editar código]

La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es constante.

Además de los focos F y F´, en una elipse destacan los siguientes elementos:

Centro, O

Eje mayor, AA´

Eje menor, BB´

Distancia focal, OF

La elipse con centro (0, 0) tiene la siguiente expresión algebraica: \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1

La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.

Tiene dos asíntotas (rectas

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com