DISTRIBUCIÓN JI-CUADRADA (X2)
Enviado por lid280389 • 27 de Septiembre de 2014 • Tesis • 406 Palabras (2 Páginas) • 329 Visitas
DISTRIBUCIÓN JI-CUADRADA (X2)
En realidad la distribución ji-cuadrada es la distribución muestral de s2. O sea que si se extraen todas las muestras posibles de una población normal y a cada muestra se le calcula su varianza, se obtendrá la distribución muestral de varianzas.
Para estimar la varianza poblacional o la desviación estándar, se necesita conocer el estadístico X2. Si se elige una muestra de tamaño n de una población normal con varianza , el estadístico:
tiene una distribución muestral que es una distribución ji-cuadrada con gl=n-1 grados de libertad y se denota X2 (X es la minúscula de la letra griega ji). El estadístico ji-cuadrada esta dado por:
donde n es el tamaño de la muestra, s2 la varianza muestral y la varianza de la población de donde se extrajo la muestra. El estadístico ji-cuadrada también se puede dar con la siguiente expresión:
Propiedades de las distribuciones ji-cuadrada
1. Los valores de X2 son mayores o iguales que 0.
2. La forma de una distribución X2 depende del gl=n-1. En consecuencia, hay un número infinito de distribuciones X2.
3. El área bajo una curva ji-cuadrada y sobre el eje horizontal es 1.
4. Las distribuciones X2 no son simétricas. Tienen colas estrechas que se extienden a la derecha; esto es, están sesgadas a la derecha.
5. Cuando n>2, la media de una distribución X2 es n-1 y la varianza es 2(n-1).
6. El valor modal de una distribución X2 se da en el valor (n-3).
La siguiente figura ilustra tres distribuciones X2. Note que el valor modal aparece en el valor (n-3) = (gl-2).
La función de densidad de la distribución X2 esta dada por:
para x>0
La tabla que se utilizará para estos apuntes es la del libro de probabilidad y estadística de Walpole, la cual da valores críticos (gl) para veinte valores especiales de . Para denotar el valor crítico de una distribución X2 con gl grados de libertad se usa el símbolo (gl); este valor crítico determina a su derecha un área de bajo la curva X2 y sobre el eje horizontal.
ESTIMACIÓN DE LA VARIANZA
Para poder estimar la varianza de una población normal se utilizará la distribución ji-cuadrada.
Al despejar esta fórmula la varianza poblacional nos queda:
Los valores de X2 dependerán de nivel de confianza que se quiera al cual le llamamos . Si nos ubicamos en la gráfica se tiene:
De la Torre L. (2003) Curso Estadística I, Tecnológico de Chihuahua.
Recuperado de: http://www.itch.edu.mx/academic/industrial/estadistica1/
...