ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El concepto de teorema de аbraham de Moivre


Enviado por   •  9 de Septiembre de 2014  •  Trabajo  •  773 Palabras (4 Páginas)  •  626 Visitas

Página 1 de 4

INTRODUCCION

Un teorema es una proposicion que afirma una verdad demostrable, el teorema de Abraham de Moivre, matemático Británico de origen francés establece que si un número complejo z = r (cos x + i sin x), entonces zn = rn (cos nx + i sin nx), en donde n puede ser enteros positivos, enteros negativos, y exponentes fraccionarios.

El teorema apareció por primera vez en la segunda edición de The Doctrine of Chances, de Abraham de Moivre, publicado en 1738. Esta fórmula es importante porque conecta a los números complejos (i significa unidad imaginaria) con la trigonometría. La expresión "cos x + i sen x" a veces se abrevia como cis x.

Además, esta fórmula puede ser utilizada para encontrar expresiones explícitas para la enésima raíz de la unidad, eso es, números complejos z tal que zn = 1.

Abraham De Moivre fue amigo de Newton; en 1698 éste último escribió que ya conocía dicha fórmula desde 1676.

POTENCIAS

Para obtener la potencia del número complejo se aplica la fórmula:

Sea z = rx un número complejo en forma polar. Para calcular su potencia n-ésima, bastará con multiplicarlo por sí mismo n veces, con lo que se obtiene:

Zn = z•z•...(n veces)...•z = (rx)•(rx)•...(n veces)...•(rx) = (r•r•...(n veces)...•r)x+x+...(n veces)..+x=(rn)n•x

Es decir,

(rx)n = (rn)n•x

Si escribimos el número z en forma trigonométrica obtenemos:

z = r• (cos x + i•sen x) ==> zn = rn• (cos x + i•sen x) n = rn• (cos n•x + i•sen n•x)

De donde: cos(n•x) + i•sen(n•x) = (cos x + i•sen x)n expresión que recibe el nombre de fórmula de Moivre.

Como aplicación de esta fórmula podemos obtener las razones trigonométricas seno y coseno de múltiplos de un ángulo conocidas las razones trigonométricas del ángulo.

Ejemplo:

Conocidos cos x y sen x, calculemos cos 4x y sen 4x:

cos 4x + i•sen 4x = (cos x + i•sen x)4 = (40)•cos4x + (41)•cos3x•i•sen x + (42)•cos2x•i2•sen2x + (43)•cos x•i3•sen3x + (44)i4•sen4x = cos4x + 4•i•cos3x•sen x - 6•cos2x•sen2x - 4•i•cos x•sen3x + sen4x = (cos4x - 6•cos2•sen2x + sen4x) + (4•cos3x•sen x - 4•cos x•sen3x)•i

Como dos complejos son iguales si y sólo si lo son sus partes reales así como sus partes imaginarias, tenemos que:

Cos 4x = cos4x - 6•cos2x•sen2x + sen4x

Sen 4x = 4•cos3x•sen x - 4•cos x•sen3x

EXTRACCIÓN DE LAS RAICES DE UN NÚMERO COMPLEJO.

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com