Hiperbola
Enviado por Miguel Rodriguez • 19 de Noviembre de 2012 • 331 Palabras (2 Páginas) • 669 Visitas
Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida al cortar un cono recto por un plano oblicuo al eje de simetría con ángulo menor que el de la generatriz respecto del eje de revolución.1
Una hipérbola es el lugar geométrico de los puntos de un plano tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva.
Etimología. Hipérbole e hipérbola
Secciones cónicas.
Hipérbola deriva de la palabra griega ὑπερβολή (exceso), y es cognado de hipérbole (la figura literaria que equivale a exageración).
Ecuaciones de la hipérbola
Ecuaciones en coordenadas cartesianas: Ecuación de una hipérbola con centro en el origen de coordenadas y ecuación de la hipérbola en su forma canónica.
Ecuación de una hipérbola con centro en el punto
Ejemplos:
a)
b)
Si el semieje transverso a se encuentra en el eje x, y el semieje conjugado b, en el eje y, entonces la hipérbola es horizontal; si es al revés, es vertical. La excentricidad de una hipérbola siempre es mayor que uno.
Ecuación de la hipérbola en su forma compleja
Una hipérbola en el plano complejo es el lugar geométrico formado por un conjunto de puntos , en el plano ; tales que, cualesquiera de ellos satisface la condición geométrica de que el valor absoluto de la diferencia de sus distacias , a dos puntos fijos llamados focos y , es una constante positiva igual al doble de la distancia (o sea ) que existe entre su centro y cualesquiera de sus vértices del eje focal.
La ecuación queda:
Evidentemente esta operación se lleva a cabo en el conjunto de los números complejos.
Ecuaciones en coordenadas polares
Dos hipérbolas y sus asíntotas.
Hipérbola abierta de derecha a izquierda:
Hipérbola abierta de arriba a abajo:
Hipérbola abierta de noreste a suroeste:
Hipérbola abierta de noroeste a sureste:
...