ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

INTEGRALES


Enviado por   •  24 de Mayo de 2013  •  1.375 Palabras (6 Páginas)  •  316 Visitas

Página 1 de 6

INTEGRALES

 una integral es una generalización de la suma deinfinitos sumandos, infinitamente pequeños.

El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la ciencia también; se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.

Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos.

Dada una función   de una variable real   y un intervalo   de la recta real, la integral

es igual al área de la región del plano   limitada entre la gráfica de  , el eje  , y las líneas verticales   y  , donde son negativas las áreas por debajo del eje  .

La palabra "integral" también puede hacer referencia a la noción de primitiva: una función F, cuya derivada es la función dada  . En este caso se denomina integral indefinida, mientras que las integrales tratadas en este artículo son las integrales definidas. Algunos autores mantienen una distinción entre integrales primitivas e indefinidas.

Los principios de la integración fueron formulados por Newton y Leibniz a finales del siglo XVII. A través del teorema fundamental del cálculo, que desarrollaron los dos de forma independiente, la integración se conecta con la derivación, y la integral definida de una función se puede calcular fácilmente una vez se conoce una antiderivada. Las integrales y las derivadas pasaron a ser herramientas básicas del cálculo, con numerosas aplicaciones en ciencia e ingeniería.

Bernhard Riemann dio una definición rigurosa de la integral. Se basa en un límite que aproxima el área de una región curvilínea a base de partirla en pequeños trozos verticales. A comienzos delsiglo XIX, empezaron a aparecer nociones más sofisticadas de la integral, donde se han generalizado los tipos de las funciones y los dominios sobre los cuales se hace la integración. La integral curvilínea se define para funciones de dos o tres variables, y el intervalo de integración [a,b] se sustituye por una cierta curva que conecta dos puntos del plano o del espacio. En una integral de superficie, la curva se sustituye por un trozo de una superficie en el espacio tridimensional.

Las integrales de las formas diferenciales desempeñan un papel fundamental en la geometría diferencial moderna. Estas generalizaciones de la integral surgieron primero a partir de las necesidades de la física, y tienen un papel importante en la formulación de muchas leyes físicas cómo, por ejemplo, las del electromagnetismo. Los conceptos modernos de integración se basan en la teoría matemática abstracta conocida como integral de Lebesgue, que fue desarrollada por Henri Lebesgue.

Si una función tiene una integral, se dice que es integrable. De la función de la cual se calcula la integral se dice que es el integrando. Se denomina dominio de integración a la región sobre la cual se integra la función. Si la integral no tiene un dominio de integración, se considera indefinida (la que tiene dominio se considera definida). En general, el integrando puede ser una función de más de una variable, y el dominio de integración puede ser un área, un volumen, una región de dimensión superior, o incluso un espacio abstracto que no tiene estructura geométrica en ningún sentido usual.

El caso más sencillo, la integral de una función real f de una variable real x sobre el intervalo [a, b], se escribe

El signo ∫, una "S" alargada, representa la integración; a y b son el límite inferior y el límite superior de la integración y definen el dominio de integración; f es el integrando, que se tiene que evaluar al variar x sobre el intervalo [a,b]; y dx puede tener diferentes interpretaciones dependiendo de la teoría que se emplee. Por ejemplo, puede verse simplemente como una indicación de quex es la variable de integración, como una representación de los pasos en la suma de Riemann, una medida (en la integración de Lebesgue y sus extensiones), un infinitesimal (en análisis no estándar) o como una cantidad matemática independiente: una forma diferencial. Los casos más complicados pueden variar la notación ligeramente.

Las integrales aparecen en muchas situaciones prácticas. Considérese una piscina. Si es rectangular y de profundidad uniforme, entonces, a partir de su longitud, anchura y profundidad, se puede determinar fácilmente el volumen de agua que puede contener (para llenarla), el área de la superficie

...

Descargar como (para miembros actualizados) txt (10 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com