INTEGRALES
Enviado por peraza_17 • 23 de Enero de 2014 • 1.034 Palabras (5 Páginas) • 188 Visitas
INTRODUCCIÓN.
La integración y la diferenciación están íntimamente relacionadas. La naturaleza de esta relación es una de las ideas más importantes en matemáticas, y su descubrimiento sigue siendo uno de los avances más importantes de los tiempos modernos.
El cálculo integral surgió de la necesidad de resolver el problema de la obtención de áreas de figuras planas. Para ello se aproximaba exhaustivamente la figura cuya área se deseaba calcular mediante polígonos de áreas conocidas y apareció el concepto de integral. Con esta idea apareció el concepto de Integral Definida. Se llama integral definida de la función f(x) 0 entre a y b (a estos dos valores se les denomina límites de integración), al área de la porción de plano limitada por la gráfica de la función, el eje X y las rectas paralelas x = a y x = b
Otra aplicación fue predecir la posición futura de un objeto en movimiento a partir de una ubicación conocida y la fórmula de su función velocidad. Este es un ejemplo claro en el cual se debe determinar una función a partir de una fórmula de su razón de cambio (velocidad) y de uno de sus valores (posición inicial). De aquí surgió el concepto de Integral Indefinida y primitiva de una función.
En la rama de la ingeniería civil facilita el cálculo ya sea para la determinación de aéreas, volúmenes, trabajo, entre otras; el presente tiene como objetivo principal el reconocimiento y mejor énfasis en lo que ya se ha descrito en la materia. Puesto que calculo es uno de los conocimientos principales que debe de poseer un ingeniero civil a la hora de desarrollar el objeto de su profesión en el campo laboral.
Integrales
Proceso que permite restituir una función que ha sido previamente derivada. Es decir, la operación opuesta de la derivada así como la suma es a la resta.
Por conveniencia se introduce una notación para la anti derivada de una función
Si F!(x) = f(x), se representa
A este grafo ∫ se le llama símbolo de la integral y a la notación ∫fx dx se le llama integral indefinida de f(x) con respecto a x. La función f(x)se denomina integrando, el proceso recibe el nombre de integración. Al número C se le llama constante de integración esta surge por la imposibilidad de la constante derivada. Así como dx denota diferenciación son respecto a la variable x, lo cual indica la variable derivada.
∫f x dx
Los principios de la integración fueron formulados por Newton y Leibniz a finales del siglo XVII. A través del teorema fundamental del cálculo, que desarrollaron los dos de forma independiente, la integración se conecta con la derivación, y la integral definida de una función se puede calcular fácilmente una vez se conoce una antiderivada. Las integrales y las derivadas pasaron a ser herramientas básicas del cálculo, con numerosas aplicaciones en ciencia e ingeniería.
La integral curvilínea se define para funciones vectoriales de una variable, y el intervalo de integración [a,b] se sustituye por el de la parametrización de la curva sobre la cual se está integrando, la cual, conecta dos puntos del plano o del espacio. En una integral de superficie, la curva se sustituye por un trozo de una superficie en el espacio tridimensional.
...