Identificación de nanomateriales
Enviado por • 10 de Julio de 2013 • 2.043 Palabras (9 Páginas) • 411 Visitas
Identificación de nanomateriales
• Materiales Nanoestructurados
Una fracción de material comúnmente posee en su interior moléculas organizadas en granos de dimensiones por lo general de micrómetros y milímetros de diámetro, estos granos están constituidos habitualmente con poblaciones de miles de millones de átomos. Una misma fracción de material nanoestructurado, posee poblaciones granulares inferiores a un par de miles de átomos y en donde los granos moleculares alcanzan un tamaño máximo de 100 nanómetros de diámetro. Entonces, los materiales nanoestructurados poseen el 0.001 por ciento de átomos en comparación con un material común de igual volumen, además los granos nanoestructurados son entre mil y cien veces más pequeños que los del material original. Todo esto conlleva a una mayor ligereza de peso y ahorro de materia, además de las nuevas características que adquieren y que potencian enormemente el material.
• Aplicaciones
Cerámicas nanoestructuradas, imanes permanentes de alta temperatura para motores de aviones; materiales ferromagnéticos, almacenamiento de información, refrigeración; catalizadores basados en hidrógeno; materiales para almacenamiento de hidrógeno; sensores y actuadores.
• Nanopartículas y Nanopolvos
Las Nanopartículas tienen unidades más grandes que las de los átomos y las moléculas, cuando menos una dimensión menos de los 100nm, obviamente estas nanoparticulas son creadas artificialmente en los laboratorios. Además otra de sus particularidades es que poseen características propias, es decir que no obedecen a la química cuántica, ni a las leyes de la física clásica.
En la actualidad el estudio de las nanopartículas es un área de intensa investigación científica, debido a una extensa variedad de potenciales aplicaciones. Entre los campos mas prometedores están los campos biomédicos, electrónicos y ópticos. Aunque por lo general las nanoparticulas están sirviendo para el perfeccionamiento e innovación de materiales ya existentes, existen también en el campo de la biomedicina nanoparticulas que han demostrado ser capaces de eliminar tumores y además de que éstas son biodegradables y orgánicas.
Figura 1. Nanopartículas. [6]
• Aplicaciones.
En la Biomedicina, sirve para la liberación de fármacos, tratamientos contra el cáncer. En la Ingeniería como sensores químicos, vidrios autolimpiables, tintas magnéticas y conductoras. Para el tratamiento de aguas con procesos fotocatalíticos, sirve para recubrimientos textiles repelentes de agua y suciedad. En el área de la electrónica para crear memorias de alta densidad, pantallas con dispositivos de emisión basados en óxidos conductores.
• Nanocápsulas
La mayor aplicación de las nanocápsulas está sin duda en el campo de la medicina, ya sea para combatir enfermedades o ayudar con la liberación de fármacos en puntos específicos dentro del cuerpo humano. Además el desarrollo de las nanocápsulas se enfoca en intervenir las mismas para que se acumulen en un punto deseado, la principal vía para lograr este objetivo es posiblemente modificar las propiedades físico-químicas de las nanocápsulas. La investigación acerca de las nanocápsulas aspira solucionar los problemas que aparecen, como son los efectos secundarios de los fármacos además de complicaciones en el tratamiento de la enfermedad.
Figura 2. Nanocapsulas. [7]
• Aplicaciones
Liberación de fármacos, industria de la alimentación, cosméticos, tratamiento de aguas residuales, componentes de adhesivos, aditivos aromáticos en tejidos, fluidos magnéticos [12].
• Nanotubos de Carbono
Tal vez uno de los nanomateriales mas interesantes y con mayor potencial de aplicación sean los nanotubos. Son estructuras cilíndricas con diámetro nanométrico. Aunque pueden ser de distinto material, los más conocidos son los de silicio pero principalmente, los de carbono ya que unas de las principales características de este último son su gran conductividad, y sus propiedades térmicas y mecánicas. Existen diferentes tipos de estructuras para formar un nanotubo, siendo la estructura, la influencia principal que decida las características finales como lo son las eléctrica, térmicas o mecánicas del nanotubo.
Debido a la importancia de los nanotubos, aquí se presenta brevemente su historia; en 1991 Sumio Iijima, descubrió los nanotubos que desde ahí han revolucionado la nanociencia. Él encontró un cilindro hueco que se había formado en la punta de un electrodo de grafito, tenía un diámetro de unos pocos nanómetros y una longitud de unas cuantas micras. Estaba hecha de carbono puro, había descubierto los nanotubos de carbono. Desde su descubrimiento hasta la actualidad, las aplicaciones reales y potenciales de los nanotubos van creciendo de forma impresionante. En su conjunto el material constituido es un perfecto semiconductor por lo que es posible que los nanotubos de carbono desempeñen el mismo papel que realizo el silicio en los circuitos electrónicos en su debido momento, pero ahora a escala molecular, donde los demássemiconductores dejan de funcionar.
Estas características auguran que los nanotubos representan el futuro de los dispositivos en la electrónica debido a su alta velocidad de funcionamiento y además de otros usos relacionados que se les pueden dar. De momento, con los nanotubos de carbono ya se han fabricado componentes básicos de los ordenadores, siendo el próximo paso, construir circuitos electrónicos y siendo optimistas en pocos años fabricar ordenadores basados en nanotecnología.
Figura 3. Nanotubos de Carbono. [8]
• Propiedades de los nanotubos de Carbono
• Propiedades eléctricas
Al tener en cuenta la complejidad electrónica de los nanotubos, además de las reglas cuánticas que rigen la conductividad, la conducción en los nanotubos de carbono se transforma a un tipo de conducción cuántica, en ocasiones los nanotubos incluso pueden presentar superconductividad. Normalmente en un dispositivo común si se representa voltaje frente a intensidad de corriente se obtiene una línea recta, o sea, V=IR, cosa diferente sucede con los nanotubos de carbono y la conducción cuántica que muestra no es directamente proporcional, sino que ahora su gráfica presenta una línea escalonada ya que la conductividad de los nanotubos es 3 órdenes de magnitud mayor que la de los materiales actualmente usados (respecto al cobre que es el material mas usado). Su conductividad depende de relaciones geométricas, o sea, del número de capas, su torsión o diámetro. Otro aspecto importante a resaltar es que estos valores además de la resistencia del nanotubo no dependen de su longitud, a diferencia de lo que ocurre
...