La Didáctica De Las Matemáticas: Una Visión General.
Enviado por m.ko • 8 de Junio de 2012 • 2.305 Palabras (10 Páginas) • 749 Visitas
Introducción
Didáctica de cualquier materia significa, en palabras de Freudenthal (1991, p 45), la organización de los procesos de enseñanza y aprendizaje relevantes para tal materia. Los didactas son organizadores: desarrolladores de educación, autores de libros de texto, profesores de toda clase, incluso los estudiantes que organizan su aprendizaje individual o grupal.
Para Brousseau (Kieran, 1998, p.596), la didáctica es la ciencia que se interesa por la producción y comunicación del conocimiento. Saber que es lo que se está produciendo en una situación de enseñanza es el objetivo de la didáctica.
Debido a la complejidad de los procesos presentes en toda situación de enseñanza y aprendizaje, Schoenfled (1987) postula una hipótesis básica consistente en que a pesar de la complejidad, las estructuras mentales de los alumnos pueden ser comprendidas y que tal comprensión ayudará a conocer mejor los modos en que el pensamiento y el aprendizaje tienen lugar. El centro de interés es, por lo tanto, explicar qué es lo que produce el pensamiento productivo e identificar las capacidades que permiten resolver problemas significativos.
Para Steiner (1985) la complejidad de los problemas planteados en la didáctica de las matemáticas produce dos reacciones extremas. En la primera están los que afirman que la didáctica de la matemática no puede llegar a ser un campo con fundamentación científica y, por lo tanto, la enseñanza de la matemática es esencialmente un arte. En la segunda postura encontramos aquellos que piensan que es posible la existencia de la didáctica como ciencia y reducen la complejidad de los problemas seleccionando sólo un aspecto parcial al que atribuyen un peso especial dentro del conjunto, dando lugar a diferentes definiciones y visiones de la misma. Steiner considera que la didáctica de la matemática debe tender hacia lo que Piaget denominó transdisciplinariedad lo que situaría a las investigaciones e innovaciones en didáctica dentro de las interacciones entre las múltiples disciplinas, (Psicología, Pedagogía, Sociología entre otras sin olvidar a la propia Matemática como disciplina científica) que permiten avanzar en el conocimiento de los problemas planteados.
La didáctica como actividad general ha tenido un amplio desarrollo en las cuatro últimas décadas de este siglo. Sin embargo, no ha acabado la lucha entre el idealista, que se inclina por potenciar la comprensión mediante una visión amplia de la matemática, y el práctico, que clama por el restablecimiento de las técnicas básicas en interés de la eficiencia y economía en el aprendizaje. Ambas posturas se pueden observar tanto en los grupos de investigadores, innovadores y profesores de matemáticas de los diferentes niveles educativos. Para una visión histórica del desarrollo de la didáctica, remitimos al lector interesado a una reciente publicación (Kilpatrick, Rico y Sierra, 1992), donde el primer autor muestra una amplia panorámica desde una perspectiva internacional, y los otros dos autores se centran más en el desarrollo de la misma en España durante el siglo XX.
1 La tendencia curricular conocida como matemática moderna
A finales de los años cincuenta y comienzo de la década de los sesenta, se produce un cambio curricular importante en la enseñanza de las matemáticas escolares, conocida como la nueva matemática o matemática moderna.
Las bases filosóficas de este movimiento se establecieron durante el seminario de Royamount, celebrado en 1959. En el transcurso del mismo, el famoso matemático francés Jean Diudonné lanzó el grito de "abajo Euclides" y propuso ofrecer a los estudiantes una enseñanza basada en el carácter deductivo de la matemática y que partiera de unos axiomas básicos en contraposición a la enseñanza falsamente axiomática de la geometría imperante en aquellos momentos. En ese mismo seminario la intervención de otro matemático francés, G. Choquet va en el mismo sentido: ... disponemos de un excelente ejemplo, el conjunto de los números enteros, donde estudiar los principales conceptos del álgebra, como son la relación de orden, la estructura de grupo, la de anillo ...". Estas dos intervenciones se pueden considerar como paradigmáticas del movimiento que se inicia, pues la primera dibuja el enfoque que ha de caracterizar la enseñanza de la matemática y la otra cual es el contenido más apropiado. La idea en principio parecía bastante lógica y coherente. Por un lado se pretendía transmitir a los alumnos el carácter lógico-deductivo de la matemática y al mismo tiempo unificar los contenidos por medio de la teoría de conjuntos, las estructuras algebraicas y los conceptos de relación y función de la matemática superior. A finales de los sesenta y principios de los setenta parece claro que la nueva matemática ha sido un fracaso. Surgen entonces algunas voces en contra del enfoque adoptado, como es el caso de R. Thom (Modern Mathematics: does it exist? (1973): " Ellos, los bourbakistas, abandonaron un campo ideal para el aprendizaje de la investigación: La geometría euclídea, mina inagotable de ejercicios y la sustituyeron por las generalidades de los conjuntos y la lógica, materiales tan pobres, vacíos y frustrantes para la enseñanza como los que más. El énfasis puesto por los estructuralistas en la axiomática no es sólo una aberración pedagógica sino también matemática."
El fracaso de la matemática moderna, pues ni se aprenden los conceptos ni estructuras superiores y además los alumnos siguen sin dominar las rutinas básicas del cálculo, produce nuevos movimientos renovadores. Entre estos movimientos aquí nos referiremos a los conocidos como retorno a lo básico, la resolución de problemas y la matemática como actividad humana.
La retorno a lo básico (Back to Basic), supuso para las matemáticas escolares retomar la práctica en los algorítmos y procedimientos básicos de cálculo. Después de un tiempo, se hizo evidente que tal retorno a lo básico no era la solución razonable a la enseñanza de las matemáticas. Los alumnos, en el mejor de los casos, aprendían de memoria los procedimientos sin comprenderlos. A finales de los setenta empezó a cuestionarse el eslogan "retorno a lo básico". ¿Qué es lo básico? Ya que no parecía posible enseñar matemáticas modernas, ¿habría que enseñar matemáticas básicas?. Esta última pregunta nos lleva a otra de forma natural, ¿qué son matemáticas básicas? ¿la geometría elemental?, ¿la aritmética?. Había demasiadas opiniones sobre qué es "lo básico". Esta pregunta impregnó el III Congreso Internacional de Educación Matemática (ICME), celebrado en Berkeley en el verano de 1980. ¿Podría ser la resolución de problemas el foco de atención y respuesta a esa pregunta? Casi como
...