La regla de Ruffini
Enviado por A3M94 • 19 de Febrero de 2015 • Informe • 396 Palabras (2 Páginas) • 271 Visitas
REGLA DE RUFFINI
La regla de Ruffini es un algoritmo que permite obtener fácilmente el cociente y el resto de la división de un polinomio por un binomio de la forma x-a. Veamos el algoritmo con un ejemplo, consideremos P(x)=2x3 + x2 - 3x + 5 y Q(x)=x-1. La división se realiza como sigue:
1. Se ordena el polinomio P(x) de mayor a menor grado y se colocan los coeficientes de cada término . Si no apareciese algún término entre el de mayor grado y el de menor se coloca un 0. A la izquierda se pone el número que se resta a x en Q(x), en nuestro caso 1 y se baja el coeficiente del término de mayor grado, este paso se corresponde con la figura 1.
2. Se multiplica el coeficiente que se ha bajado (2) por el que se ha colocado a la izquierda (1). El resultado del producto se coloca debajo del coeficiente del término siguiente y se suman. Figura 2
3. El resultado de la suma se vuelve a multiplicar por el número situado a la izquierda y se repite el proceso. Figuras 3 y 4.
4. El último número (recuadro rojo en Fig. 4) se corresponde con el resto de la división mientras que el resto de números de la fila inferior son los coeficientes del cociente.
Resto = 5 y C(x)=2x2 + 3x por tanto 2x3 + x2 - 3x + 5 =(x-1) (2x2 + 3x) +5
Solamente se puede aplicar la Regla de Ruffini cuando el divisor es un binomio de la forma: (x - a). Por ejemplo: (x - 3), (x + 2), (x - 1/2), etc.
Para aplicar la Regla de Ruffini, se ponen los coeficientes de dividendo
-Completo y ordenado de mayor a menor grado-, y el opuesto del número "a" del divisor (El opuesto del término independiente. Si es una suma, queda un número negativo. Si es una resta, queda un número positivo). Las x (o letras) del polinomio se quitan, y se hacen determinadas operaciones entre los números. Luego, en el resultado, el último número de la derecha es el Resto de la división; y los otros números son los coeficientes del Cociente (resultado de la división), a los que hay que agregarles las "x" en orden de izquierda a derecha, comenzando por un grado menos que el del dividendo y disminuyendo hasta llegar a un término independiente (grado cero).
...