Marco teorico
Enviado por anajessica33 • 15 de Noviembre de 2014 • 1.384 Palabras (6 Páginas) • 246 Visitas
MARCO TEÓRICO
1.- HISTORIA DE LA PROGRAMACIÓN LINEAL
El problema de la resolución de un sistema lineal de inecuaciones se remonta, al menos, a Joseph Fourier, después de quien nace el método de eliminación de Fourier-Motzkin. La programación lineal se plantea como un modelo matemático desarrollado durante la Segunda Guerra Mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta 1947. En la posguerra, muchas industrias lo usaron en su planificación diaria.
Los fundadores de la técnica son George Dantzig, quien publicó el algoritmo simplex, en 1947, John von Neumann, que desarrolló la teoría de la dualidad en el mismo año, y Leonid Kantoróvich, un matemático ruso, que utiliza técnicas similares en la economía antes de Dantzig y ganó el premio Nobel en economía en 1975. En 1979, otro matemático ruso, Leonid Khachiyan, diseñó el llamado Algoritmo del elipsoide, a través del cual demostró que el problema de la programación lineal es resoluble de manera eficiente, es decir, en tiempo polinomial. Más tarde, en 1984, Narendra Karmarkar introduce un nuevo método del punto interior para resolver problemas de programación lineal, lo que constituiría un enorme avance en losprincipios teóricos y prácticos en el área.
El ejemplo original de Dantzig de la búsqueda de la mejor asignación de 70 personas a 70 puestos de trabajo es un ejemplo de la utilidad de la programación lineal. La potencia de computación necesaria para examinar todas las permutaciones a fin de seleccionar la mejor asignación es inmensa (factorial de 70, 70!) ; el número de posibles configuraciones excede al número de partículas en el universo. Sin embargo, toma sólo un momento encontrar la solución óptima mediante el planteamiento del problema como una programación lineal y la aplicación del algoritmo simplex. La teoría de la programación lineal reduce drásticamente el número de posibles soluciones óptimas que deben ser revisadas.
3.- VARIABLES
Las variables son números reales mayores o iguales a cero.
En caso que se requiera que el valor resultante de las variables sea un número entero, el procedimiento de resolución se denomina Programación entera.
A.- Restricciones
Las restricciones pueden ser de la forma:
Donde:
• A = valor conocido a ser respetado estrictamente;
• B = valor conocido que debe ser respetado o puede ser superado;
• C = valor conocido que no debe ser superado;
• j = número de la ecuación, variable de 1 a M (número total de restricciones);
• a; b; y, c = coeficientes técnicos conocidos;
• X = Incógnitas, de 1 a N;
• i = número de la incógnita, variable de 1 a N.
En general no hay restricciones en cuanto a los valores de N y M. Puede ser N = M; N > M; ó, N < M.
Sin embargo si las restricciones del Tipo 1 son N, el problema puede ser determinado, y puede no tener sentido una optimización.
Los tres tipos de restricciones pueden darse simultáneamente en el mismo problema.
B.- Función Objetivo
La función objetivo puede ser:
C.- Programación entera
En algunos casos se requiere que la solución óptima se componga de valores enteros para algunas de las variables. La resolución de este problema se obtiene analizando las posibles alternativas de valores enteros de esas variables en un entorno alrededor de la solución obtenida considerando las variables reales. Muchas veces la solución del programa lineal truncado esta lejos de ser el óptimo entero, por lo que se hace necesario usar algún algoritmo para hallar esta solución de forma exacta. El más famoso es el método de 'Ramificar y Acotar' o Branch and Bound por su nombre en inglés. El método de Ramificar y Acotar parte de la adición de nuevas restricciones para cada variable de decisión (acotar) que al ser evaluado independientemente (ramificar) lleva al óptimo entero.
4.- APLICACIONES
La programación lineal constituye un importante campo de la optimización por varias razones, muchos problemas prácticos de la investigación de operaciones pueden plantearse como problemas de programación lineal. Algunos casos especiales de programación lineal, tales como los problemas de flujo de redes y problemas de flujo de mercancías se consideraron en el desarrollo de las matemáticas lo suficientemente importantes como para generar por si mismos mucha investigación sobre algoritmos especializados en su solución. Una serie de algoritmos diseñados para resolver otros tipos de problemas de optimización constituyen casos particulares de la más amplia técnica de la programación lineal. Históricamente, las ideas de programación
...