ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematica-conicas


Enviado por   •  2 de Mayo de 2013  •  1.348 Palabras (6 Páginas)  •  425 Visitas

Página 1 de 6

SECCIONES CÓNICAS

Las cónicas de Apolonio de Pérgamo (262 – 190 a.C), constaban de ocho libros. Esta obra es el resultado de estudiar las secciones de cono a las que denominó cónicas. Apolonio descubrió que se obtendrían al cortar mediante una superficie plana un cono circular en diversas posiciones.

Depende de cómo se corten, las secciones resultantes serán círculos, elipses, hipérbolas o parábolas. Aunque estos conceptos no tuvieron posibilidad de ser aplicados a la ciencia de la época, su importancia ha quedado plenamente justificada con el paso del tiempo.

Hay varias formas de estudiar las cónicas:

a) Una forma empírica como hicieron los griegos, se aprecia en las figuras siguientes, en términos de intersecciones del cono con planos.

b) Como casos particulares de ecuaciones de segundo grado con dos variables x e y.

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

c) Sin embargo en este nivel de estudios, como introducción a las funciones de varias variables, es más adecuado estudiarlas como lugares geométricos de puntos que cumplen cierta propiedad geométrica.

1. LA CIRCUNFERENCIA

Definición.- Una circunferencia es el lugar geométrico de los P(x;y) que equidistan de un punto fijo C llamado centro

d(P,C) = constante = radio

Sea P(x,y) un punto cualquiera verificando d(P,C) = r, siendo r el radio y C(h , k) el centro.

De la formula de distancia entre dos puntos se tiene: y elevando al cuadrado se obtiene la ecuación de la circunferencia … Ecuación General

Cuando la ecuación tiene centro en el origen se tiene la ecuación canónica

EJEMPLO

Halla el centro y el radio de la circunferencia .

Resolución.

Para conseguir la ecuación general de la circunferencia se agrupan cuadrados de la siguiente forma:

Sustituyendo en la expresión dada se obtiene

Luego el centro es C(2,3) y el radio r = 5.

2. La Elipse

Definición.- Una elipse es el lugar geométrico de los P(x , y) cuya suma de distancias a dos puntos fijos F y F’ (focos) es constante.

|FP| + |PF’| = 2a = constante

Para su construcción manual, se toma un segmento de longitud 2a y se sujetan sus extremos en los puntos F’ y F, los focos, si se mantiene el segmento tirante y se va girando se obtiene el gráfico de la elipse.

Ecuación Canónica de la Elipse

La ecuación canónica de una elipse cuando los focos están situados en el eje Ox y |PF| + |PF’| = 2a corresponde a:

 “a” es el semieje mayor

 “b” es el semieje menor

 focos F(c,0) , F’(-c,0)

 el centro es (0,0)

 vértices A, A’, B, B’

 En el gráfico se tiene: BF = a; OB = b; OF = c.

Luego por el teorema de Pitágoras:

EJEMPLO

Halla el eje mayor, el eje menor, los vértices y los focos de la elipse

Resolución.-

De la ecuación Se tiene:

 Eje mayor 2a = 2.5 = 10

 Eje menor 2b = 2.4 = 8

 Vértices: A(5;0), A’(-5;0), B(0;4), B’(0,-4)

 Los focos: Como

Ecuación General de la Elipse

La ecuación de la elipse cuando el centro está en el punto O(h;k) es:

Aplicaciones de la Elipse (como cónica)

Las Leyes de Kepler

En 1609 Johannes Kepler (1571 – 1620) publica, utilizando las observaciones de su maestro Tycho Brahe, su obra “Astronomía Nova” en donde enuncia las dos primeras leyes referente a las orbitas de los planetas. Posteriormente, en 1619, Kepler publicaría la tercera.

Primera Ley Los planetas describen órbitas elípticas en uno de cuyos focos está el sol.

Segunda Ley Las áreas barridas por la recta que une el sol con el planeta son directamente proporcionales a los tiempos empleados en barrerlas.

(Si las áreas dibujadas son iguales, entonces la velocidad del planeta es mayor en el perihelio que en el afelio)

Tercera Ley Los cuadrados de los periodos de revolución son proporcionales a los cubos de los semiejes mayores de las órbitas.

3. La Hipérbola

Definición.- Una hipérbola es el lugar geométrico de los P(x ; y) cuya diferencia de distancias a dos puntos fijos F y F’ (focos) es constante.

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com