ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Paradoja De Pascal


Enviado por   •  9 de Julio de 2015  •  1.748 Palabras (7 Páginas)  •  1.494 Visitas

Página 1 de 7

Paradoja de Pascal.

A primera vista puede resultar algo sorprendente el hecho de que para un fluido dado, la presión dependa exclusivamente de la profundidad y no de otras cosas como el tamaño y forma del recipiente, o pueden resultar algo extrañas situaciones como la siguiente, conocida como paradoja de Pascal. Consideremos los tres recipientes de idéntica base que se presentan en la figura . Los tres están llenos de agua hasta el mismo nivel, pero sus formas son muy distintas, uno tiene la parte superior muy cerrada, uno es cilíndrico y el otro tiene la parte superior muy abierta, pero todos ellos tienen la misma base. Puede resultar algo sorprendente el hecho de que en los tres casos la fuerza ejercida sobre la base sea la misma, como se desprende de la ecuación general de la estática de fluidos. Sin embargo, no es tan sorprendente si se tiene en cuenta que las paredes del recipiente ejercen sobre el líquido una fuerza perpendicular a las mismas, que puede tener una componente vertical neta bien hacia abajo (primer caso), nula (segundo caso) o bien hacia arriba (tercer caso), componente vertical que es necesario tener en cuenta, y que en el primer caso añade un término adicional al peso del fluido, en el segundo caso no afecta y en el tercer caso aminora el efecto de peso del fluido.

El manómetro

Es un instrumento utilizado para la medición de la presión en los fluidos, generalmente determinando la diferencia de la presión entre el fluido y la presión local.

Cuando los manómetros deben indicar fluctuaciones rápidas de presión se suelen utilizar sensores piezoeléctricos o electrostáticos que proporcionan una respuesta instantánea.

Hay que tener en cuenta que la mayoría de los manómetros miden la diferencia entre la presión del fluido y la presión atmosférica local, entonces hay que sumar ésta última al valor indicado por el manómetro para hallar la presión absoluta. Cuando se obtiene una medida negativa en el manómetro es debida a un vacío parcial.

Rango de presiones:

Las presiones pueden variar entre 10-8 y 10-2 mm de mercurio de presión absoluta en aplicaciones de alto vacío, hasta miles de atmósferas en prensas y controles hidráulicos. Con fines experimentales se han obtenido presiones del orden de millones de atmósferas, y la fabricación de diamantes artificiales exige presiones de unas 70.000 atmósferas, además de temperaturas próximas a los 3.000 °C.

En la atmósfera, el peso cada vez menor de la columna de aire a medida que aumenta la altitud hace que disminuya la presión atmosférica local. Así, la presión baja desde su valor de 101.325 Pa al nivel del mar hasta unos 2.350 Pa a 10.700 m (35.000 pies, una altitud de vuelo típica de un reactor).

Por 'presión parcial' se entiende la presión efectiva que ejerce un componente gaseoso determinado en una mezcla de gases. La presión atmosférica total es la suma de las presiones parciales de sus componentes (oxígeno, nitrógeno, dióxido de carbono y gases nobles).

Manómetro de Burdon:

Instrumento mecánico de medición de presiones que emplea como elemento sensible un tubo metálico curvado o torcido, de sección transversal aplanada. Un extremo del tubo esta cerrado, y la presión que se va a medir se aplica por el otro extremo. A medida que la presión aumenta, el tubo tiende a adquirir una sección circular y enderezarse. El movimiento del extremo libre (cerrado) mide la presión interior y provoca el movimiento de la aguja.

El principio fundamental de que el movimiento del tubo es proporcional a la presión fue propuesto por el inventor francés Eugene Burdon en el siglo XIX.

Los manómetros Burdon se utilizan tanto para presiones manométricas que oscilan entre 0-1 Kg/cm2 como entre 0-10000 Kg/cm2 y también para vacío.

Las aproximaciones pueden ser del 0.1 al 2% de la totalidad de la escala, según el material, el diseño y la precisión de las piezas.

El elemento sensible del manómetro puede adoptar numerosas formas. Las más corrientes son las de tubo en C, espiral y helicoidal.

El tubo en C es simple y consistente y muy utilizado con esferas indicadoras circulares. También se emplea mucho en algunos indicadores eléctricos de presión, en los que es permisible o deseable un pequeño movimiento de la aguja. El campo de aplicación es de unos 1500 Kg/cm2.

Las formas espiral y helicoidal se utilizan en instrumentos de control y registro con un movimiento más amplio de la aguja o para menores esfuerzos en las paredes. Los elementos en espiral permiten un campo de medición de 0.300 Kg/cm2, y los helicoidales hasta 10000 kg/cm2

A menudo se prefiere el tubo torcido, consistente y compacto, especialmente para los indicadores eléctricos de presión.

Los tubos Burdon se presentan en una serie de aleaciones de cobre y en aceros inoxidables al cromo níquel. En ciertos aspectos las aleaciones de cobre dan mejor resultado, pero los aceros inoxidables ofrecen mayor resistencia a la corrosión. También se utilizan tubos de aleación hierro-níquel, debido a que tienen un coeficiente de dilatación muy pequeño, que hace que la lectura d la presión no esté influida por la temperatura del instrumento.

Los instrumentos mecánicos y neumáticos con elementos Burdon permiten una aproximación del 0.5% de la escala. Si se precisa mayor exactitud se emplean indicadores eléctricos. Los manómetros Burdon miden la diferencia

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com