Praxticas De Bioquimicas
Enviado por alexbren • 15 de Febrero de 2014 • 15.100 Palabras (61 Páginas) • 287 Visitas
ACIDOS NUCLEICOS
Son compuestos orgánicos de elevado peso molecular, formados por carbono, hidrógeno, oxígeno, nitrógeno y fósforo. Cumplen la importante función de sintetizar las proteínas específicas de las células y de almacenar, duplicar y transmitir los caracteres hereditarios. Los ácidos nucleicos, representados por el ADN (ácido desoxirribonucleico) y por el ARN (ácido ribonucleico), son macromoléculas formadas por la unión de moléculas más pequeñas llamadas nucleótidos.
NUCLEÓTIDOS
Son moléculas compuestas por grupos fosfato, un monosacárido de cinco carbonos (pentosa) y una base nitrogenada. Además de constituir los ácidos nucleicos forman parte de coenzimas y de moléculas que contienen energía. Los nucleótidos tienen importantes funciones, entre ellas el transporte de átomos en la cadena respiratoria mitocondrial, intervenir en el proceso de fotosíntesis, transporte de energía principalmente en forma de adenosin trifosfato (ATP) y transmisión de los caracteres hereditarios.
Esquema de un nucleótido
Grupos fosfato
Son los que dan la característica ácida al ADN y ARN. Estos ácidos nucleicos, al tener nucleótidos con un solo radical (monofosfato) son estables. Cuando el nucleótido contiene más grupos fosfato (difosfato, trifosfato) se vuelve inestable, como sucede con el adenosin trifosfato o ATP. En consecuencia, se rompe un enlace fosfato y se libera la energía que lo une al nucleótido. Los grupos fosfato forman parte de la bicapa lipídica de las membranas celulares.
Pentosas
Son monosacáridos con cinco carbono en su molécula. En los ácidos nucleicos hay dos tipos de pentosas, la desoxirribosa presente en el ADN y la ribosa, que forma parte del ARN.
Bases nitrogenadas
También hay dos tipos. Las derivadas de la purina son la adenina y la guanina y las que derivan de la pirimidina son la citosina, la timina y el uracilo.
Bases nitrogenadas
La timina está presente solo en el ADN, mientras que el uracilo está únicamente en el ARN. El resto de las bases nitrogenadas forma parte de ambos ácidos nucleicos.
La asociación de los nucleótidos con otras estructuras moleculares permite la transmisión de caracteres hereditarios y el transporte de energía.
NUCLEÓSIDOS
Es la unión de una pentosa con una base nitrogenada, a través del carbono 1’ del monosacárido con un nitrógeno de la base. Al establecerse la unión química se desprende una molécula de agua.
Esquema de un nucleósido
Los nucleósidos se identifican de acuerdo a la base nitrogenada de la cual provienen. Si derivan de bases purínicas llevan el sufijo “osina”. Si lo hacen de bases pirimidínicas se agrega la terminación “idina”. Además, si el nucleósido está unido a la desoxirribosa se le agrega el prefijo “desoxi”.
Nomenclatura de los nucleósidos
De acuerdo a lo señalado, un nucleótido está formado por un nucleósido unido a uno o más grupos fosfato. Los nucleótidos se identifican de manera similar que los nucleósidos, omitiendo la última vocal y añadiendo la palabra “fosfato”, por ejemplo, adenosin fosfato, desoxicitidin fosfato, uridin fosfato, etc.
Los ácidos nucleicos son larguísimas cadenas formadas por millones de nucleótidos que se unen entre sí por enlaces de fosfatos. La base nitrogenada del nucleótido se une al carbono 1’ de la molécula de pentosa y el grupo fosfato al carbono 5’. La columna vertebral de la cadena o hilera la constituyen el grupo fosfato y la pentosa.
ACIDO DESOXIRRIBONUCLEICO (ADN)
Es una molécula sumamente compleja que contiene toda la información genética del individuo. El ADN regula el control metabólico de todas las células.
El ADN posee una doble cadena o hilera de polinucleótidos, ambas con forma helicoidal y ensamblada a manera de escalera. Es un ácido nucleico presente en el núcleo, en las mitocondrias y en los cloroplastos de todas las células eucariotas. Se dispone de manera lineal, aunque en las procariotas tiene forma circular y está disperso en el citoplasma.
Para su estudio se lo divide en cuatro estructuras.
Estructura primaria del ADN
Como fue señalado, cada nucleótido está compuesto por una molécula de ácido fosfórico, una desoxirribosa como pentosa y cuatro bases nitrogenadas que son la adenina, citosina, guanina y timina.
Estructura secundaria del ADN
El ADN está formado por dos hileras o cadenas de polinucleótidos. El nucleótido de cada hilera sigue a otro nucleótido, y este a su vez al siguiente. De esta forma, cada nucleótido se denomina de acuerdo a la secuencia de cada base nitrogenada. Por ejemplo, una de las secuencias puede ser G-T-A-C-A-T-G-C. Una determinada secuencia de nucleótidos del ADN se denomina gen. Los genes se ubican en un determinado lugar de los cromosomas, y ejercen funciones específicas.
Las bases nitrogenadas de una cadena o hilera están orientadas hacia las bases nitrogenadas de la otra hilera complementaria, unidas entre sí por puentes de hidrógeno.
Las bases enfrentadas de cada hilera no lo hacen al azar, sino que la adenina se une siempre a la timina (A-T) mediante dos puentes de hidrógeno y la citosina hace lo propio con la guanina (C-G) a través de tres puentes de hidrógeno, tal como puede verse en el siguiente esquema. De esta forma, las dos hileras permanecen conectadas en toda su longitud.
La forma en que se disponen las cuatro bases nitrogenadas a lo largo de toda la cadena es la responsable de codificar la información genética de la célula, con instrucciones para controlar el desarrollo y las funciones del individuo. Numerosas proteínas como las histonas y factores de transcripción se adosan a la molécula de ADN con el fin de regular su expresión.
Estructura secundaria del ADN
Estructura terciaria del ADN
El ADN no está libre dentro del núcleo de la célula, sino que está organizado en un complejo llamado cromatina. Se denomina cromatina a la estructura formada por ADN y proteínas histónicas y no histónicas. La cromatina está inmersa en el jugo nuclear cuando la célula está en interfase, es decir, entre dos mitosis. En esa etapa, la molécula de ADN forma largos y numerosos filamentos que se enrollan a sucesivas moléculas de proteínas especiales llamadas histonas. Esto produce que el ADN sufra una importante compactación, puesto que en cada enrollamiento el ADN da casi dos vueltas sobre cuatro pares de histonas. Esas histonas, que se reconocen como H2A, H2B, H3 y H4, forman el octámero de histonas al agruparse de a pares.
...