Sistema Masa - Resorte
Enviado por westIQ • 13 de Noviembre de 2014 • 1.087 Palabras (5 Páginas) • 417 Visitas
Practica 9 sistema masa – resorte
m1=100g
m2=80g
m3=60g
m4=50g
m5=120g
M (kg) 100 80 60 50 120
T(s) 0.833 0.745 0.515 0.393 0.874
K(N/m) 5.695 0.690 8.935 12.81 6.208
Cuestionario
- Establezca la K promediando los valores obtenidos
K=(4π^2 m)/T^2
Para la masa de 0.100kg
K=(4π^2*0.100)/(0.833)^2 =3.947/0.693=5.695
Para la masa de 0.080kg
K=(4π^2*0.080)/(0.745)^2 =3.1582/0.555=5.690
Para la masa de 0.060kg
K=(4π^2*0.060)/(0.515)^2 =2.368/0.265=8.935
Para la masa de 0.050kg
K=(4π^2*0.050)/(0.393)^2 =1.973/0.154=12.811
Para la masa de 0.120kg
K=(4π^2*0.120)/(0.874)^2 =4.737/0.763=6.208
- Determine las unidades de K
Constante elástica de un fuelle es: -K=F/x, donde las unidades son –K=N/m
Para la relación masa (Kg) –Periodo (s) en un Movimiento armónico simple.
Entonces T= 2π/w, y reemplazando el valor de w^2 en esta ecuación
T=2π√(m/k)
Ahora despejando K
K=(4π^2 m)/T^2
Que reemplazando unidades:
K=4π^2 Kg=kg/s^2 Valor valido para K
Demostración:
T=2π√(m/k)
T=2π√(kg/(kg/s^2 ))
T=2π√(kg/(kg/s^2 ))
T=2π√(s^2 )
Masa Vs Tiempo
Análisis de resultados:
La grafica anterior nos permite identificar una característica del MAS ya que la posición del resorte varía en función del tiempo.
Las oscilaciones son directamente proporcionales al rango del periodo que genera ya que entre más oscila su periodo es mayor.
Los factores que dependen la constante de elasticidad están dados por la forma del resorte, el material del resorte, la fuerza y la masa del mismo ya que cuando el resorte se estira o se contrae acumula energía.
- Analice el efecto producido al sistema masa-resorte por una fuerza extrema. Explique.
Efecto producido al sistema masa – resorte por una fuerza externa.
Cuando la fuerza externa actúa, el resorte responde con la fuerza elástica, deformándose adicionalmente la distancia y, e incrementando la energía potencial elástica. Pero esta energía adicional ya no hace parte de la energía interna del sistema, porque la fuente de la fuerza externa no hace parte del sistema masa-resorte que estamos considerando. Mientras la fuerza externa actúe, hay equilibrio, y tenemos que F = - ky (no olvide, y, es a partir del equilibrio, estado de mínima energía). Cuando cesa la acción de la fuerza externa; -ky ya no está equilibrada, y se convierte en una fuerza neta diferente de cero, que de acuerdo con la segunda ley de Newton, esa fuerza es igual a la masa (en el sistema masa-resorte) por la aceleración que ella adquiere, o sea -ky = ma.
La ecuación ma = - ky o a = ymk, se convierte en la ecuación dinámica del sistema masa-resorte en consideración. Además no se debe olvidar que la magnitud de la deformación y, debe estar comprendida dentro de la región lineal del resorte. Un sistema físico común en el que la fuerza varía con la posición, es el de un cuerpo conectado a un resorte. Si el resorte, orientado en dirección, se deforma desde su configuración inicial, es decir se estira o se comprime, por efecto de alguna fuerza externa sobre el resorte, instantáneamente actúa una fuerza producida por el resorte contra el objeto que ejerce la fuerza externa, k una constante positiva, llamada constante de fuerza del resorte, que es una medida de la rigidez (dureza)
...