Tesis Viscosidad
Enviado por sergiokibe • 26 de Enero de 2014 • 24.793 Palabras (100 Páginas) • 351 Visitas
Theses and Dissertations
6-2011
Via Sapientiae:
The Institutional Repository at DePaul University
College of Liberal Arts and Social Sciences
The dependence of suspension viscosity on particle
size, shear rate, and solvent viscosity
Marc Pavlik
DePaul University, MARCPAVLIK@COMCAST.NET
Recommended Citation
Pavlik, Marc, "The dependence of suspension viscosity on particle size, shear rate, and solvent viscosity" (2011). Theses and
Dissertations. Paper 71.
http://via.library.depaul.edu/etd/71
This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact mbernal2@depaul.edu.
THE DEPENDENCE OF SUSPENSION VISCOSITY ON
PARTICLE SIZE, SHEAR RATE, AND SOLVENT VISCOSITY
A Thesis
Presented in
Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
August 19, 2009
BY
Marc Pavlik
PHYSICS DEPARTMENT
College of Liberal Arts and Sciences
DePaul University
Chicago, Illinois
TABLE OF CONTENTS
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
4
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 15
CHAPTER 2 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . 20
2.1 Newton’s Law of Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Particle Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Stream Lines and Interacting Spheres . . . . . . . . . . . . . . . . . . 24
2.4 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Mooney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Krieger-Dougherty . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Batchelor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.5 Brady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CHAPTER 3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1 Concentric Cylinder . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 NESLAB RTE 7 Bath Circulator . . . . . . . . . . . . . . . . 35
3.1.3 Rheometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Glycerine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Glass Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Experiment Procedure . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CHAPTER 4 Data/Analysis . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Universal Trends in the Data . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Solvent Viscosity Dependence . . . . . . . . . . . . . . . . . . 49
4.1.3 Angular Velocity Dependence . . . . . . . . . . . . . . . . . . 51
TABLE OF CONTENTS – Continued
3
4.1.4 Particle Size Dependence . . . . . . . . . . . . . . . . . . . . . 53
4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Fitting Procedures . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 The Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Fitting Parameter . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Fitting Parameter 'm . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Fitting Parameter ˛ . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.4 Fitting Parameter ˇ . . . . . . . . . . . . . . . . . . . . . . . 116
CHAPTER 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
APPENDIX A Code used to minimize2. . . . . . . . . . . . . . . 124
LIST OF FIGURES
2.1 A car in a wind tunnel showing laminar flow. Notice the streamlines
4
do not touch or cross while remaining parallel to each other. . . . . . 20
2.2 A cigarette showing both laminar and turbulent flow. The smoke
nearest the cigarette is laminar. The
...