UNIDADES, CANTIDADES FÍSICAS Y VECTORES
Enviado por jorge11lopez11 • 19 de Agosto de 2013 • 17.511 Palabras (71 Páginas) • 1.067 Visitas
UNIDADES,
CANTIDADES FÍSICAS
Y VECTORES
1
METAS DE
APRENDIZAJE
? Ser capaz de pre-
decir la trayectoria de
un huracán resulta
esencial para reducir
al mínimo los posibles
daños a las propieda-
des y a las vidas huma-
nas. Si un huracán se
mueve a 20 km/h en
una dirección de 53°
al norte del este,
¿qué tan lejos al norte
se moverá el huracán
en una hora?
E
l estudio de la física es importante porque es una de las ciencias más fundamen-
tales. Los científicos de todas las disciplinas utilizan las ideas de la física, como
los químicos que estudian la estructura de las moléculas, los paleontólogos que
intentan reconstruir la forma de andar de los dinosaurios, y los climatólogos que estu-
dian cómo las actividades humanas afectan la atmósfera y los océanos. Asimismo, la
física es la base de toda la ingeniería y la tecnología. Ningún ingeniero podría diseñar
un televisor de pantalla plana, una nave espacial interplanetaria ni incluso una mejor
trampa para ratones, sin antes haber comprendido las leyes básicas de la física.
El estudio de la física es también una aventura. Usted la encontrará desafiante,
a veces frustrante y en ocasiones dolorosa; sin embargo, con frecuencia le brindará
abundantes beneficios y satisfacciones. La física estimulará en usted su sentido de lo
bello, así como su inteligencia racional. Si alguna vez se ha preguntado por qué el
cielo es azul, cómo las ondas de radio viajan por el espacio vacío, o cómo un satélite
permanece en órbita, encontrará las respuestas en la física básica. Sobre todo, apre-
ciará la física como un logro sobresaliente del intelecto humano en su afán por enten-
der nuestro mundo y a la humanidad misma.
En este capítulo inicial repasaremos algunos conceptos importantes que necesita-
remos en nuestro estudio. Comentaremos la naturaleza de la física teórica y el uso de
modelos idealizados para representar sistemas físicos. Presentaremos los sistemas
de unidades que se emplean para especificar cantidades físicas y analizaremos la for-
ma de describirlas con precisión. Estudiaremos ejemplos de problemas que no tienen
(o para los que no nos interesa obtener) una respuesta exacta donde, no obstante, las
aproximaciones son útiles e interesantes. Por último, examinaremos varios aspectos
de los vectores y el álgebra vectorial que necesitaremos para describir y analizar can-
tidades físicas, como velocidad y fuerza, que tienen dirección además de magnitud.
Al estudiar este capítulo,
usted aprenderá:
• Cuáles son las cantidades
fundamentales de la mecánica
y cuáles son las unidades que
los físicos utilizan para medirlas.
• Cómo manejar cifras significativas
en sus cálculos.
• La diferencia entre escalares
y vectores, y cómo sumar y
restar vectores gráficamente.
• Cuáles son las componentes
de un vector y cómo se utilizan
para realizar cálculos.
• Cuáles son los vectores unitarios
y cómo se utilizan con las
componentes para describir
vectores.
• Dos formas para multiplicar
vectores.
1
http://libreria-universitaria.blogspot.com
2
C APÍT U LO 1 Unidades, cantidades físicas y vectores
1.1 La naturaleza de la física
La física es una ciencia experimental. Los físicos observan los fenómenos naturales
e intentan encontrar los patrones y principios que los describen. Tales patrones se deno-
minan teorías físicas o, si están muy bien establecidos y se usan ampliamente, leyes o
principios físicos.
CU I DA D O El significado de la palabra “teoría” Decir que una idea es una teoría no
implica que se trate de una divagación o de un concepto no comprobado. Más bien, una teoría
es una explicación de fenómenos naturales basada en observaciones y en los principios funda-
mentales aceptados. Un ejemplo es la bien establecida teoría de la evolución biológica, que es
el resultado de extensas investigaciones y observaciones de varias generaciones de biólogos. ❚
1.1 Dos laboratorios de investigación.
a) Según la leyenda, Galileo estudió el
movimiento de cuerpos en caída libre
soltándolos desde la Torre Inclinada en
Pisa, Italia. Se dice que también estudió
el movimiento de los péndulos observando
la oscilación del candelabro de la catedral
que está junto a la torre.
b) El telescopio espacial Hubble es
el primer telescopio importante que
operó fuera de la atmósfera terrestre.
Las mediciones realizadas con el Hubble
han ayudado a determinar la edad y la
rapidez de expansión del Universo.
a)
El desarrollo de la teoría física exige creatividad en cada etapa. El físico debe apren-
der a hacer las preguntas adecuadas, a diseñar experimentos para tratar de contestarlas
y a deducir conclusiones apropiadas de los resultados. La figura 1.1 muestra dos fa-
mosas instalaciones experimentales.
Cuenta la leyenda que Galileo Galilei (1564-1642) dejó caer objetos ligeros y pesa-
dos desde la Torre Inclinada de Pisa (figura 1.1a) para averiguar si sus velocidades de
caída eran iguales o diferentes. Galileo sabía que sólo la investigación experimental le
daría la respuesta. Examinando los resultados de sus experimentos (que en realidad
fueron mucho más complejos de lo que cuenta la leyenda), dio el salto inductivo al
principio, o teoría, de que la aceleración de un cuerpo que cae es independiente de
su peso.
El desarrollo de teorías físicas como la de Galileo siempre es un proceso bidirec-
cional, que comienza y termina con observaciones o experimentos. El camino para
lograrlo a menudo es indirecto, con callejones sin salida, suposiciones erróneas, y el
abandono de teorías infructuosas en favor de otras más promisorias. La física no es
una mera colección de hechos y principios; también es el proceso que nos lleva a los
principios generales que describen el comportamiento del Universo físico.
Ninguna teoría se considera como la verdad final o definitiva. Siempre hay la po-
sibilidad de que nuevas observaciones obliguen a modificarla
...