ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Calculo Integral y sus aplicaciones


Enviado por   •  11 de Julio de 2018  •  Tarea  •  834 Palabras (4 Páginas)  •  171 Visitas

Página 1 de 4

[pic 1]

23-9-2017

Evidencia de Aprendizaje. Obtención de funciones a partir de marginales Elisa Veronica Medina Quezada   MAT: ES162002998

UNIDAD 4

Matemáticas Administrativas         Docente: Irma Bedolla solano

[pic 2]


Unidad 4. Cálculo integral y sus aplicaciones.

Información e instrucciones para efectuar la evidencia de aprendizaje. Obtención de funciones a partir de las marginales.

Herramienta: Tarea

Estimados estudiantes en línea el propósito de esta actividad es que el (la) estudiante aplique todos los conocimientos que adquirió en la unidad 4.

Indicaciones de la actividad:

Documéntate antes de comenzar la actividad revisa en tu contenido nuclear los temas referentes a esta unidad.

Primera parte.

Determina la integral de las funciones siguiente:

a) ∫2dx         = 2x + c

b) ∫4²ˣ2dx     =   42x 2dx=   42x

                                        Ln|4| + c

Segunda parte.

La empresa mueble para su hogar S.A. de C.V.”, ha determinado que sus costos fijos son de $6,500.00 al día y su costo de fabricación es de $95.00 por cada mesa, actualmente vende su producto a $125.00.

Con la información anterior determina lo siguiente:

  • Determina la función del costo total.

De acuerdo a la función de costo total que está determinada por : c(x) = cv + cf  

C (x) = 95x + 6500

  • ¿Cuántas unidades deberá producir y vender cada día, con el objeto de garantizar que el negocio se mantenga en el punto de equilibrio?

Para esto se deberá igualar la función de costo total con la función de ingreso:

Función de costo: c(x) = 95x +6500

Función de ingreso: i(x) = xp = 125x

Por lo que: i(x) = c(x)

Sustituyendo: 95x + 6500 = 125x

Despejando: 6500 = 125x -95x

6500 = 30x

X=6500/30

X= 216.66

Para comprobar, se sustituye el valor de x en la fórmula de costo y el la de ingreso y deberá ser el mismo resultado:

c(x) = 95x +6500  = c(216.66) = 95(216.66) + 6500 = 27,083.33

i(x) = 125x             = i (216.66)= 125(216.66)            = 27,083.33

Así que para que la empresa pueda mantener su punto de equilibrio deberá vender 216.66 unidades

  • Determina la función de ingreso con respecto al punto de equilibrio.

La función de ingreso está definida por:

I(x) = Xp

Tercera parte

Determina la función de costo promedio y la función de costo marginal de producir 321 mesas si actualmente se producen 320 mesas por mes.

C(x)= 750000+1120x+135x²

Función de costo marginal y sustituyendo

C’(x) = 1120 + 135x

...

Descargar como (para miembros actualizados) txt (4 Kb) pdf (144 Kb) docx (109 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com