ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

FACTORIZACION


Enviado por   •  26 de Agosto de 2014  •  1.049 Palabras (5 Páginas)  •  265 Visitas

Página 1 de 5

Antes que todo, hay que decir que todo polinomio se puede factorizar utilizando números reales, si se consideran los números complejos. Existen métodos de factorización, para algunos casos especiales.

Binomios

Diferencia de cuadrados

Suma o diferencia de cubos

Suma o diferencia de potencias impares iguales

Trinomios

Trinomio cuadrado perfecto

Trinomio de la forma x²+bx+c

Trinomio de la forma ax²+bx+c

Polinomios

Factor común

Triángulo de Pascal como guía para factorizar

Caso I - Factor común[editar]

Sacar el factor común es añadir el literal común de un polinomio, binomio o trinomio, con el menor exponente y el divisor común de sus coeficientes. Tambien se puede describir como buscar el factor comun entre los factores

a^2+a b = a (a+b)

9a^2-12ab+15a^3b^2-24ab^3=3a(3a-4b+5a^2b^2-8b^3)

Factor común trinomio[editar]

Factor común por agrupación de términos

ab + ac + ad = a ( b + c + d) \,

ax + bx + ay + by = a (x+y) + b (x+y) = (x+y)(a + b ) \, y si solo si el polinomio es 0 y el tetranomio nos da x.

Factor común polinomio[editar]

Primero hay que determinar el factor común de los coeficientes junto con el de las variables (la que tenga menor exponente). Se toma en cuenta aquí que el factor común no solo cuenta con un término, sino con dos.

un ejemplo:

5x^2(x-y) + 3x(x-y) +7(x-y) \,

Se aprecia claramente que se está repitiendo el polinomio (x-y), entonces ese será el factor común. El otro factor será simplemente lo que queda del polinomio original, es decir:

(5x^2 + 3x +7) \,

La respuesta es:

(5x^2+3x+7)(x-y) \,

En algunos casos se debe utilizar el número 1, por ejemplo:

5a^2(3a+b) +3a +b \,

Se puede utilizar como:

5a^2(3a+b) + 1(3a+b) \,

Entonces la respuesta es:

(3a+b) (5a^2+1) \,

Caso II - Factor común por agrupación de términos[editar]

Para trabajar un polinomio por agrupación de términos, se debe tener en cuenta que son dos características las que se repiten. Se identifica porque es un número par de términos.

Un ejemplo numérico puede ser:

2y + 2j +3xy + 3xj\,

entonces puedes agruparlos de la siguiente manera:

= (2y+2j)+(3xy+3xj)\,

Aplicamos el caso I (Factor común)

= 2(y+j)+3x(y+j)\,

= (2+3x)(y+j)\,

Ejercicio # 2 del algebra am - bm + an - bn =(am-bm)+(an-bn) =M(a-b)+ n(a-b =(a-b)(m+n)

Caso III - Trinomio Cuadrado Perfecto[editar]

Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfecto debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.

(a+b)^2 = a^2+2ab+b^2\,

(a-b)^2 = a^2-2ab+b^2\,

Ejemplo 1:

(5x-3y)^2 = 25x^2-30xy+9y^2\,

Ejemplo 2:

(3x+2y)^2 = 9x^2+12xy+4y^2\,

Ejemplo 3:

(x+y)^2 = x^2+2xy+y^2\,

Ejemplo 4:

4x^2+25y^2-20xy\,

Organizando los términos tenemos

4x^2 - 20xy + 25y^2\,

Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:

(2x - 5y)^2\,

Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.

Caso IV - Diferencia de cuadrados[editar]

Se identifica por tener dos términos elevados al cuadrado y unidos por el signo menos. Se resuelve por medio de dos paréntesis, (parecido a los productos de la forma (a-b)(a+b), uno negativo y otro positivo.

(ay-bx)(ay+bx)=

(ay)^2-(bx)^2

\,

O en una forma más general para exponentes pares:

(ay)^{2n}-(bx)^{2m}=

((ay)^n-(bx)^m)((ay)^n+(bx)^m)\,

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com