Factorizacion
Enviado por Azari_14 • 3 de Marzo de 2015 • 769 Palabras (4 Páginas) • 209 Visitas
Consiste en aplicar la propiedad distributiva:
a · b + a · c + a · d = a (b + c + d)
Ejemplos
Descomponer en factores sacando factor común y hallar las raíces
1. x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = −1
2. 2x4 + 4x2 = 2x2 (x2 + 2)
Sólo tiene una raíz x = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.
3. x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)
La raíces son x = a y x = b.
Diferencia de cuadrados
Una diferencia de cuadrados es igual a suma por diferencia.
a2 − b2 = (a + b) · (a − b)
Ejemplos
Descomponer en factores y hallar las raíces
1. x2 − 4 = (x + 2) · (x − 2)
Las raíces son x = −2 y x = 2
2. x4 − 16 = (x2 + 4) · (x2 − 4) =
= (x + 2) · (x − 2) · (x2 + 4)
Las raíces son x = −2 y x = 2
Trinomio cuadrado perfecto
Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.
a2 ± 2 a b + b2 = (a ± b)2
Ejemplos
Descomponer en factores y hallar las raíces
1.
La raíz es x = −3, y se dice que es una raíz doble.
2.
La raíz es x = 2.
Trinomio de segundo grado
Para descomponer en factores el trinomio de segundo grado P(x) = ax2 + bx + c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:
ax2 + bx + c = a · (x − x1) · (x − x2)
Ejemplos
Descomponer en factores y hallar las raíces
1.
Las raíces son x = 3 y x = 2.
2.
Las raíces son x = 3 y x = −2.
Trinomios de cuarto grado de exponentes pares
Para hallar las raíces se iguala a cero y se resuelve la ecuación bicuadrada.
Ejemplos
1. x4 − 10x2 + 9
x2 = t
x4 − 10x2 + 9 = 0
t2 − 10t + 9 = 0
x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)
2. x4 − 2x2 − 3
x2 = t
t2 − 2t − 3 = 0
x4 − 2x2 + 3 = (x2 + 1) · (x + ) · (x −
...