ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Metodos Matematicos


Enviado por   •  25 de Abril de 2013  •  1.435 Palabras (6 Páginas)  •  579 Visitas

Página 1 de 6

1. INVESTIGAR MODELOS MATEMATICOS PARA LA TOMA DE DECISIONES

CRITERIO DE LAPLACE

Este criterio, propuesto por Laplace en 1825, está basado en el principio de razón insuficiente: como a priori no existe ninguna razón para suponer que un estado se puede presentar antes que los demás, podemos considerar que todos los estados tienen la misma probabilidad de ocurrencia, es decir, la ausencia de conocimiento sobre el estado de la naturaleza equivale a afirmar que todos los estados son equiprobables. Así, para un problema de decisión con n posibles estados de la naturaleza, asignaríamos probabilidad 1/n a cada uno de ellos.

La regla de Laplace selecciona como alternativa óptima aquella que proporciona un mayor resultado esperado:

CRITERIO DE WALD

Este es el criterio más conservador ya que está basado en lograr lo mejor de las peores condiciones posibles. esto es, si el resultado x(ai, ej) representa pérdida para el decisor, entonces, para ai la peor pérdida independientemente de lo que ej pueda ser, es máx ej { x(ai, ej) }. El criterio minimax elige entonces la acción ai asociada a :

En una forma similar, si x(ai, ej) representa la ganancia, el criterio elige la acción ai asociada a :

Este criterio recibe el nombre de criterio maximin, y corresponde a un pensamiento pesimista, pues razona sobre lo peor que le puede ocurrir al decisor cuando elige una alternativa

CRITERIO DE HURWICZ

Este criterio representa un intervalo de actitudes desde la más optimista hasta la más pesimista. En las condiciones más optimistas se elegiría la acción que proporcione el máx ai máx ej { x(ai, ej) }. Se supone que x(ai, ej), representa la ganancia o beneficio. De igual manera, en las condiciones más pesimistas, la acción elegida corresponde a máx ai mín ej { x(ai, ej) }. El criterio de Hurwicz da un balance entre el optimismo extremo y el pesimismo extremo ponderando las dos condiciones anteriores por los pesos respectivos  y (1- ), donde 0 ≤  ≤ 1. Esto es, si x(ai, ej) representa beneficio, seleccione la acción que proporcione:

Para el caso donde x(ai, ej) representa un costo, el criterio selecciona la acción que proporciona:

El parámetro  se conoce como índice de optimismo: cuando  = 1, el criterio es demasiado optimista; cuando  = 0, es demasiado pesimista . Un valor de  entre cero y uno puede ser seleccionado dependiendo de si el decisor tiende hacia el pesimismo o al optimismo. En ausencia de una sensación fuerte de una circunstancia u otra, un valor de  = 1/2 parece ser una selección razonable.

CRITERIO DE SAVAGE

En 1951 Savage argumenta que al utilizar los valores xij para realizar la elección, el decisor compara el resultado de una alternativa bajo un estado de la naturaleza con todos los demás resultados, independientemente del estado de la naturaleza bajo el que ocurran. Sin embargo, el estado de la naturaleza no es controlable por el decisor, por lo que el resultado de una alternativa sólo debería ser comparado con los resultados de las demás alternativas bajo el mismo estado de la naturaleza.

Con este propósito Savage define el concepto de pérdida relativa o pérdida de oportunidad rij asociada a un resultado xij como la diferencia entre el resultado de la mejor alternativa dado que ej es el verdadero estado de la naturaleza y el resultado de la alternativa ai bajo el estado ej:

Así, si el verdadero estado en que se presenta la naturaleza es ej y el decisor elige la alternativa ai que proporciona el máximo resultado xij, entonces no ha dejado de ganar nada, pero si elige otra alternativa cualquiera ar , entonces obtendría como ganancia xrj y dejaría de ganar xij-xrj.

Savage propone seleccionar la alternativa que proporcione la menor de las mayores pérdidas relativas, es decir, si se define ri como la mayor pérdida que puede obtenerse al seleccionar la alternativa ai,

el criterio de Savage resulta ser el siguiente:

Conviene destacar que, como paso previo a la aplicación de este criterio, se debe calcular la matriz de pérdidas relativas, formada por los elementos rij. Cada columna de esta matriz se obtiene calculando la diferencia entre el valor máximo de esa columna y cada uno de los valores que aparecen en ella.

Observe que si x(ai, ej) es una función de beneficio o de pérdida, la

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com