ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ESTADISTICA


Enviado por   •  29 de Abril de 2013  •  967 Palabras (4 Páginas)  •  428 Visitas

Página 1 de 4

Un jugador tiene tres oportunidades de lanzar una moneda para que aparezca una cara, el juego termina en el momento en que cae una cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece cara el jugador recibe $20000, $40000 o $80000 respectivamente, si no cae cara en ninguno de los tres pierde $200000. Si X representa la ganancia del jugador:

A. Encuentre la función de probabilidad f(x)

B. Encuentre el valor esperado E(x), la varianza V(x) y la desviación estándar S(x)

Función de probabilidad:

X 0 1

f(X) 1/2 1/2

F(x) = 1/2 para 0,1

Valor esperado E(x) = µ:

= E(x) =

X 0 1

f(X) 0,5 0,5

= E(x) = (0x0, 5)+ (1x0, 5) = 0,5

Varianza V(x):

= V(x) = (x-

= V(x) = (x-

= V(x) = (x-

= V(x) = (x-

Desviación estándar S(x):

= S(x) =

= S(x) =

= S(x) = 0

Un jugador tiene tres oportunidades de lanzar una moneda para que aparezca una cara, el juego termina en el momento en que cae una cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece cara el jugador recibe $20000, $40000 o $80000 respectivamente, si no cae cara en ninguno de los tres pierde $200000. Si X representa la ganancia del jugador:

A. Encuentre la función de probabilidad f(x)

B. Encuentre el valor esperado E(x), la varianza V(x) y la desviación estándar S(x)

Función de probabilidad:

X 0 1

f(X) 1/2 1/2

F(x) = 1/2 para 0,1

Valor esperado E(x) = µ:

= E(x) =

X 0 1

f(X) 0,5 0,5

= E(x) = (0x0, 5)+ (1x0, 5) = 0,5

Varianza V(x):

= V(x) = (x-

= V(x) = (x-

= V(x) = (x-

= V(x) = (x-

Desviación estándar S(x):

= S(x) =

= S(x) =

= S(x) = 0

Un jugador tiene tres oportunidades de lanzar una moneda para que aparezca una cara, el juego termina en el momento en que cae una cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece cara el jugador recibe $20000, $40000 o $80000 respectivamente, si no cae cara en ninguno de los tres pierde $200000. Si X representa la ganancia del jugador:

A. Encuentre la función de probabilidad f(x)

B. Encuentre el valor esperado E(x), la varianza V(x) y la desviación estándar S(x)

Función de probabilidad:

X 0 1

f(X) 1/2 1/2

F(x) = 1/2 para 0,1

Valor esperado E(x) = µ:

= E(x) =

X 0 1

f(X) 0,5 0,5

= E(x) = (0x0, 5)+ (1x0, 5) = 0,5

Varianza V(x):

= V(x) = (x-

= V(x) = (x-

= V(x) = (x-

= V(x) = (x-

Desviación estándar S(x):

= S(x) =

= S(x) =

= S(x) = 0

Un jugador tiene tres oportunidades de lanzar una moneda para que aparezca una cara, el juego termina en el momento en que cae una cara o después de tres intentos, lo que suceda primero. Si en el primero, segundo o tercer lanzamiento aparece cara el jugador recibe $20000, $40000 o $80000 respectivamente, si no cae cara en ninguno de los tres pierde $200000. Si X representa la ganancia del jugador:

A. Encuentre la función de probabilidad f(x)

B. Encuentre el valor esperado

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com