Libro De Quimica
Enviado por aldhier • 27 de Octubre de 2013 • 1.868 Palabras (8 Páginas) • 331 Visitas
El cerebro matemático
Diversos experimentos muestran una gran activación de los lóbulos frontal y parietal en la resolución de problemas. Stanislas Dehaene y sus colaboradores enseñaron una serie de cálculos a voluntarios bilingües en uno de sus idiomas2. Tras el entrenamiento, se les pedía que resolvieran ese tipo de cálculos de forma exacta o aproximada en las dos lenguas. Los investigadores observaron que la resolución de problemas exactos era más rápida en la lengua que utilizaron al aprender los cálculos, aunque utilizaran más la otra lengua en la vida cotidiana. Sin embargo, en los cálculos aproximados (se les pedía a los voluntarios que hicieran estimaciones) no se apreciaban diferencias significativas. En los cálculos exactos se observaba una mayor activación en las áreas del cerebro involucradas en el lenguaje, mientras que en los cálculos aproximados se activaba más el lóbulo parietal de los dos hemisferios.
En las imágenes, se muestra en azul las regiones activadas en el cálculo exacto y en amarillo las zonas activadas en el cálculo aproximado. Se observa un predominio de la activación de la corteza prefrontal izquierda (azul) y de la parte derecha del lóbulo parietal (amarillo).2
.
Análisis posteriores sugieren que la información numérica puede ser procesada en el cerebro mediante tres sistemas diferentes, cada uno de ellos asociado con tres regiones del lóbulo parietal3:
1. Sistema verbal en el que los números se representan mediante palabras. Por ejemplo, cuarenta y tres. Se activa el giro angular izquierdo que interviene en los cálculos exactos.
2. Sistema visual en el que los números se representan según una asociación de números arábigos conocidos. Por ejemplo, 43. Se activa un sistema superior posterior parietal relacionado con la atención.
3. Sistema cuantitativo no verbal en el que podemos establecer los valores de los números. Por ejemplo, entendemos el significado del número cuarenta y tres generado por cuatro decenas y tres unidades. En este sistema participa la región más activa e importante en la resolución de problemas numéricos, el segmento horizontal del surco intraparietal (HIPS). Su activación aumenta más cuando se hace una estimación de un resultado aproximado que no cuando realizamos un cálculo exacto. En la aproximación, aunque se activan los dos hemisferios cerebrales, existe una cierta preferencia por el derecho.
Representación tridimensional de las tres regiones del lóbulo parietal que intervienen en los procesamientos numéricos (en verde el giro angular izquierdo y en rojo el surco intraparietal)3 El lóbulo parietal es muy importante en la vida cotidiana porque facilita la representación espacial.
.
Analicemos alguna operación concreta. En las multiplicaciones (sabemos que los niños aprenden de memoria las tablas de multiplicar) se activa el giro angular izquierdo que pertenece al sistema verbal, es decir, son codificadas verbalmente. Sin embargo, al hacer comparaciones o estimaciones se activa el surco intraparietal porque no necesitamos convertir los números en palabras, es decir, son independientes del lenguaje. El hemisferio izquierdo calcula (recordemos que en la mayoría de personas, al ser diestras, el lenguaje reside en el hemisferio izquierdo) mientras que el hemisferio derecho hace estimaciones.
En relación a la función que desempeña el lóbulo parietal en la representación espacial, hemos escuchado a matemáticos explicar la utilización de imágenes mentales en la resolución repentina de problemas. Esto guarda relación directa con el concepto de “insight” (ver artículo anterior /insight/) que hace referencia a la capacidad de comprender la estructura interna de un problema que, muchas veces, aparece de forma imprevisible. La comprensión de los mecanismos inconscientes que facilitan este tipo de resoluciones tendrá enormes implicaciones en la forma de enseñar, aunque lo que ya conocemos es que para que se produzca el “insight” se requiere un estado de relajación cerebral. Una razón más para facilitar los estados exentos de estrés en los entornos educativos.
Algunos factores críticos en la enseñanza de las matemáticas
1. Creencias previas y factores emocionales
Comentarios típicos como “nunca entendí las matemáticas” o ”no se me dan bien las matemáticas” se han asentado, progresivamente, en la mente de muchos alumnos y recalcan la importancia que tienen las creencias previas y la inteligencia emocional en el aprendizaje.
Fomentar un clima educativo que favorezca las emociones positivas (facilitando factores como el optimismo o la resiliencia), en detrimento de las negativas, es tan importante o más que la aportación de contenidos puramente académicos.
La pedagogía utilizada en la fase inicial del aprendizaje de las matemáticas incide directamente en la motivación del alumno. El rechazo inicial provocado en muchos niños guarda una relación directa, en numerosas ocasiones, con una enseñanza basada en infinidad de cálculos mecánicos que coartan el proceso intelectual creativo del alumno y en una representación de la terminología incomprensible para él.
Ejemplo: Consideremos la resta 8 – 3 = 5. Los adultos podemos asimilar esa situación a una gran variedad de casos prácticos, por ejemplo, si en un recorrido de ocho kilómetros hemos caminado tres nos faltarán otros cinco; si una temperatura inicial de ocho grados desciende tres, la temperatura final será de cinco grados,…El día que se introducen los números negativos y el profesor escribe 3 – 8 = -5, el niño puede tener dificultades para entender el significado del cálculo. En este caso, la temperatura le puede aportar una imagen intuitiva más eficaz que la distancia (- 5 grados facilita el aprendizaje del concepto, en lugar de -5 kilómetros).
2. El papel del profesor
Ya hemos comentado que diferentes estudios parecen demostrar que los seres humanos nacemos con un sentido numérico innato. Según Dehaene4 y Butterworth5, dos de los grandes expertos mundiales en el estudio de las matemáticas y el cerebro, la escuela obstaculiza este desarrollo facilitado, inicialmente,
...