Matematicas Avanzadas
Enviado por terious • 19 de Julio de 2013 • 1.628 Palabras (7 Páginas) • 627 Visitas
Nombre: Jose Antonio Cantu González Matrícula: al02535750
Nombre del curso:
Matemáticas avanzadas I Nombre del profesor:
Edgar Melendrez Rivera
Módulo:
IV Actividad:
Actividad integradora IV
Fecha: 03/07/2013
Bibliografía:
Algebra lineal Stanley I Grossman Mc Graw Hill Quinta edicion
Demuestra en cada uno de los siguientes ejercicios el teorema de Fubini (realiza las integrales dobles intercambiando el orden de la integración).
y
sean a=-1,b=3,c=0,d=2
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_0^2▒∫_(-1)^3▒(3-2x^3 y^2 )dxdy〗
∫_0^2▒〖[3x-1/2 x^4 y^2 ]_(x=-1)^(x=3) dy〗
∫_0^2▒[(9-81/2 y^2 )-(-3-1/2 y^2)]dy
∫_0^2▒〖(12-40y^2 〗)dy=[12y-40/3 y^3 ]_(y=0)^(y=2)
24-320/3=-248/3
∫_a^b▒∫_c^d▒〖f(x,y)dydx=∫_(-1)^3▒∫_0^2▒(3-2x^3 y^2 )dydx〗
∫_(-1)^3▒〖[3y-2/3 x^3 y^3 ]_(y=0)^(y=2) dx〗
∫_(-1)^3▒(6-16/3 x^3 )dx
[6x-4/3 x^4 ]_(x=-1)^(x=3)
(18-108)-(-6-4/3)=90+22/3=-248/3
Se demuestra que:
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_a^b▒∫_c^d▒〖f(x,y)dydx=∬_r^ ▒f(x,y)da〗〗
y
sean a=-5,b=-1,c=1,d=5
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_1^5▒∫_(-5)^(-1)▒〖((3x^2)/y+x^3 y^(2/3) )dxdy=∫_1^5▒〖[x^3/y+1/4 x^4 y^(2/3) ]_(x=-5)^(x=-1) dy〗 〗〗
∫_1^5▒[(-1/y+y^(2/3)/4)-(125/y+(625y^(2/3))/4) ]dy
∫_1^5▒(124/y-156y^(2/3) )dy
[124 ln(y)-468/5 y^(5/3) ]_(y=1)^(y=5)
[124 ln(5)-468/5 (5)^(5/3) ]-[124 ln(1)-468/5 (1)^(5/3) ]
124 ln(5)-468∛25+468/5=-507.098
∫_a^b▒∫_c^d▒〖f(x,y)dydx=∫_(-5)^(-1)▒〖∫_1^5▒〖 ((3x^2)/y+x^3 y^(2/3) )dydx〗 〗〗
∫_(-5)^(-1)▒〖[3x^2 ln(y)+3/5 x^3 y^(5/3) ]_(y=1)^(y=5) dx〗
∫_(-5)^(-1)▒{[3x^2 ln(5)+3/5 x^3 (5)^(5/3) ]-[3x^2 ln(1)+3/5 x^3 (1)^(5/3) ]}dx
∫_(-5)^(-1)▒[3x^2 ln(5)+(3∛(25 )-3/5) x^3 ]dx
[x^3 ln(5)+(3/4 ∛25-3/20) x^4 ]_(x=-5)^(x=-1)
(-ln(5)+3/4 ∛25-3/20)
-(-125 ln(5)+1875/4 ∛25-1875/20)
124 ln(5)-468∛25+468/5=-507.098
Se demuestra que:
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_a^b▒∫_c^d▒〖f(x,y)dydx=∬_R^ ▒f(x,y)da〗〗
y
sean a=4,b=8,c=2,d=5
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_2^5▒∫_4^8▒〖[sen(4x)+cos(3y) ] dxdy〗〗
∫_2^5▒[-1/4 cos(4x)+xcos(3y)]_(x=4)^(x=8) dy
∫_2^5▒{[-1/4 cos(32)+8 cos(3y) ]-[-1/4 cos(16)+4 cos(3y) ]}dy
∫_2^5▒[-1/4 cos(32)+1/4 cos(16)+4cos(3y)]dy
[-y/4 cos(32)+y/4 cos(16)+4/3 sen(3y)]_(y=2)^(y=5)
[-5/4 cos(32)+5/4 cos(16)+4/3 sen(15)]-[-2/4 cos(32)+2/4 cos(16)+4/3 sen(6)]
-3/4 cos(32)+3/4 cos(16)+4/3 sen(15)-4/3 sen(6)=0.2906
∫_a^b▒∫_c^d▒〖f(x,y)dydx=∫_4^8▒∫_2^5▒[sen(4x)+cos(3y)]dydx〗
∫_4^8▒〖[y sen(4x)+1/3 sen(3y)]_(y=2)^(y=5) dx〗
∫_4^8▒{[5 sen (4x)+1/3 sen(15)]-[2sen(4x)+1/3 sen(6)]} dx
∫_4^8▒[3sen(4x)+1/3 sen(15)-1/3 sen(6)]dx
[-3/4 cos(4x)+x/3 sen(15)-x/3 sen(6) ]_4^8
[-3/4 cos(32)+8/3 sen(15-8/3 sen(6)]-[-3/4 cos(16)sen(15)-4/3 sen(6)]
-3/4 cos(32)+3/4 cos(16)+4/3 sen(15)-4/3 sen(6)=0.2906
Se demuestra que:
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_a^b▒∫_c^d▒〖f(x,y)dydx=∬_R^ ▒f(x,y)da〗〗
y
sean a=2,b=4,c=-2,d=0
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_(-2)^0▒∫_2^4▒(xe^y )dxdy〗
∫_(-2)^0▒〖[1/2 x^2 e^y ]_(x=2)^(x=4) dy〗
∫_(-2)^0▒〖(8e^y-2e^y )dy=∫_(-2)^0▒〖6e^y dy〗〗
[6e^y ]_(y=-2 )^(y=0)=6-6e^(-2)=5.1879
∫_a^b▒∫_c^d▒〖f(x,y)dydx=∫_2^4▒∫_(-2)^0▒〖(xe^y )dydx=∫_2^4▒〖[xe^y ]_(y=-2)^(y=0) dx〗〗〗
∫_2^4▒〖(x-xe^(-2) )dx=[x^2/2-x^2/2 e^(-2) ]_(x=2)^(x=4) 〗
(8-8e^(-2) )-(2-2e^(-2) )=6-6e^(-2)=5.1879
Se demuestra que:
∫_c^d▒∫_a^b▒〖f9x,y)dxdy=∫_a^b▒∫_c^d▒〖f(x,y)dydx=∬_R^ ▒f(x,y)da〗〗
y
sean a=1,b=5,c=0,d=2x
∫_a^b▒∫_c^d▒〖f(x,y)dydx=∫_1^5▒∫_0^2x▒〖xy^3 dydx=∫_1^5▒〖[1/4 xy^4 ]_(y=0)^(y=2x) dx〗〗〗
∫_1^5▒〖4x^5 dx=[2/3 x^6 ]_(x=1)^(x=5)=31250/3-2/3=10416〗
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_0^2x▒∫_1^5▒〖xy^3 dxdy=∫_2^10▒∫_(y/2)^5▒〖xy^3 dxdy+∫_0^2▒∫_1^5▒〖xy^3 dxdy〗〗〗〗
∫_2^10▒〖[1/2 x^2 y^3 ]_(x=y/2)^(x=5) dy+∫_0^2▒〖[1/2 x^2 y^3 ]_(x=1)^(x=5) dy〗〗
∫_2^10▒〖(25/2 y63-1/8 y^5 )dy+∫_0^2▒(25/2 y^3-1/2 y^3 )dy〗
[25/8 y^4-1/48 y^6 ]_(y=2)^(y=10)+[3y^4 ]_0^2
31250-62500/3-50+4/3+48=10416
Se demuestra que
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_a^b▒∫_c^d▒f(x,y)dydx〗
y
sean a=3/2 π,b=2π,c=0,d=x/2
∫_a^b▒∫_c^d▒〖f(x,y)dydx=∫_(3/2 π)^2π▒∫_0^(x/2)▒〖sen(2x-y)dydx=∫_(3/2 π)^2π▒〖[cos(2x-y) ]_(y=0 )^(y=x/2) dx〗〗〗
∫_(3/2 π)^2π▒〖[cos(3/2 x)-cos(2x)]dx=[2/3 sen(3/2 x)-1/2 sen(2x)]_(x=3/2 π)^(x=2π) 〗
2/3 sen(3π)-1/2 sen(4π)-2/3 sen(9/4 π)+1/2 sen(3π)
0-0-2/(3√2)=-0.471
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_0^(x/2)▒∫_(3/2 π)^2π▒sen(2x-y)dxdy〗
∫_(3/4 π)^π▒∫_2y^2π▒〖sen92x-y)dxdy+∫_0^(3/4 π)▒∫_(3/2 π)^2π▒sen(2x-y)dxdy〗
∫_(3/4 π)^π▒〖[-1/2 cos92x-y)]_(x=2y)^(x=2π) dy+∫_0^(3/4 π)▒[-1/2 cos(2x-y)]_(x=3/2 π)^(x=2π) 〗+∫_0^(3/4 π)▒[-1/2 cos(4π-y)]dy
[1/2 sen(4π-y)+1/6 sen(3y)]_(y=3/4 π)^(y=π)+[1/2 sen(4π-y)-1/2 sen(3π-y)]_(y=0)^(y=3/4 π)
1/2 sen(3π)-1/6 sen(3π)-1/2 sen(13/4 π)-1/6 sen(9/4 π)+1/2 sen(13/4 π)-1/2 sen(9/4 π)-1/2 sen(4π)+1/2 sen(3π)
0+0-2/(3√(2 ))-0+0=2/(3√2)=-0.471
Se cumple el teorema de fubini:
∫_c^d▒∫_a^b▒〖f(x,y)dxdy=∫_a^b▒∫_c^d▒〖f(x,y)dydx=∬_R^ ▒f(x,y)da〗〗
Calcula el área bajo las curvas utilizando el concepto de integración doble.
despejamos y de la segunda ecuacion se obtiene:
y=x/3-1/2 …(1)
y=x^2-4…(2)
graficando (1)y(2)
Igualando (1) y (2) y resolviendo:
x/3-1/2=x^2-4
x^2-1/3 x-7/2=0
x=(-b±√(b^2-4ac))/2a
x=(1/3±√(1/9+14))/2
De donde
x_1=(1+√127)/6=2.044
x_2=(1-√127)/6=-1.711
Sustituyendo en (1)
y_1=(-8-√127)/18=0.181
y_2=(-8-√127)/18=-1.07
...