1.6 Teoria De La Decision En Estadistica
Enviado por alehkarrillo • 25 de Febrero de 2013 • 456 Palabras (2 Páginas) • 4.128 Visitas
1.6 TEORÍA DE DECISIÓN EN ESTADÍSTICA
* ESTADISTICA
Se usa como un valioso auxiliar y en los diferentes campos del conocimiento y en las variadas ciencias. Es un lenguaje que permite comunicar información basada en datos cuantitativos.
* DECISIONES ESTADÍSTICA
En la práctica con frecuencia se está obligando a tomar decisiones sobre poblaciones con base en la información de muestras. Tales decisiones se llaman decisiones estadísticas. Por ejemplo, se puede querer decidir a partir de los datos del muestreo, si un suero nuevo es realmente efectivo para la cura de una enfermedad, si un sistema educacional es mejor que otro, si una moneda determinada está o no cargada. etc.
* HIPÓTESIS ESTADÍSTICAS. HIPÓTESIS NULA
Para llegar a tomar decisiones, conviene hacer determinados supuestos o conjeturas acerca de las poblaciones que se estudian. Tales supuestos que pueden ser o no ciertos se llaman hipótesis estadísticas y, en general, lo son sobre las distribuciones de probabilidad de las poblaciones.
En muchos casos se formulan las hipótesis estadísticas con el solo propósito de rechazarlas o invalidarlas. Por ejemplo, si se quiere decidir si una moneda está cargada, se formula la hipótesis de que la moneda está bien, s decir, p = 0.5; donde p es la probabilidad de cara.
Análogamente, si se quiere decidir sobre si un procedimiento es mejor que otro, se formula la hipótesis de que no hay diferencia entre los procedimientos (es decir, cualquier diferencia observada se debe meramente a fluctuaciones en el muestreo de la misma población). Tales hipótesis se llaman también hipótesis nulas y se denotan por Ho.
Cualquier hipótesis que difiera de una hipótesis dada se llama hipótesis alternativa. Por ejemplo, si una hipótesis es p = 0.5, hipótesis alternativas son p = 0.7; p ? 0,5 o p > 0,5. Una hipótesis alternativa de la hipótesis nula se denota por H 1.
* ENSAYOS DE HIPÓTESIS Y SIGNIFICACIÓN
Si en el supuesto de que una hipótesis determinada es cierta, se encuentra que los resultados observados en una muestra al azar difieren marcadamente de aquellos que cabía esperar con la hipótesis y con la variación propia del muestreo, se diría que las diferencias observadas son significativas y se estaría en condiciones de rechazar la hipótesis (o al menos no aceptarla de acuerdo con la evidencia obtenida). Por ejemplo, si en 20 lanzamientos de una moneda se obtienen 16 caras, se estaría inclinado a rechazar la hipótesis de que la moneda está bien, aunque sería posible que fuese un rechazamiento erróneo.
Los procedimientos que facilitan el decidir si una hipótesis se acepta o se rechaza o el determinar si las muestras observadas difieren significativamente de los resultados esperados se llaman ensayos de hipótesis, ensayos de significación o reglas de decisión.
...