Algebra, Trigonometría y Geometría Analítica
Enviado por datedute • 4 de Mayo de 2013 • Tesis • 907 Palabras (4 Páginas) • 353 Visitas
Trabajo Colaborativo Unidad 2
Algebra, Trigonometría y Geometría Analítica
301301_176
Víctor Esneider Salazar Navarro
Cod. 1090414029
Ingeniería Ambiental
Cead Bucaramanga
Mayo 2013
Universidad Abierta y a Distancia
UNAD
INTRODUCCIÓN
Es un trabajo donde se aplica el reconocimiento del curso de Algebra, Trigonometría y Geometría Analítica. Dicha actividad se desarrolló teniendo en cuenta la guía presentada por el tutor y la rúbrica evaluativa, el trabajo consta de dos fases, la primera fase individual y la segunda grupal. El realizar la actividad de una forma responsable, sirve para conocer el curso e ir aprendiendo a leer e interpretar de una manera correcta, todos los contenidos del mismo. El proceso de análisis, comprensión e interpretación de las temáticas propuestas, son fundamentales para poder transitar en posteriores áreas del conocimiento propias de un programa académico universitario, en este curso se presentan una serie de problemas que se pueden solucionar mediante ecuaciones, inecuaciones, funciones de sumatoria, trigonometría etc.
ACTIVIDAD
1. De la siguiente relación R = * +
a. Dominio b. Rango
El dominio de esta función son todos los reales, dado que es una función polinomica
Averigüemos la imagen o condominio, dado que el coeficiente principal es (-4/3) es negativo, el rango abarca desde menos infinito hasta la ordenada (coordenada y) del vértice.
Factor común (-4/3)
Ahora completamos cuadrados en el paréntesis para averiguar el vértice. ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) -((1/4)-(3/4))
-x+ ) = (x-(1/2) + (2/4)
Entonces:
Y = (-4/3) ((x-(1/2) + (1/2))
Y = (-4/3) ((x-(1/2) – (2/3)
La expresión al cuadrado puede tomar valores nulos o positivos únicamente.
El menor valor de (x-(1/2) se alcanza cuando x=1/2
Para este valor Y = -2/3
Entonces tenemos las coordenadas del vértice.
((1/2), -(2/3))
El rango es entonces:
( , -(2/3))
2. Dada las funciones f (x)= 3x - 2; g (x) = Determine:
a. = (3x-2+ = 3(2)-2+2(3) = 6-2+8 = 12 b. ( = 3x-2- = 3(2)-2-(2 = 6-2-8 = -4 c. = (3x-2)( = 3 – 2 = 3(2 – 2(2 = 48 -16 = 32 d. = (3x-2)/ = (6-2)/8 = 4/8 = ½
3. Verifique las siguientes identidades:
a. (sec x + tan x) (1 – sen x) = cos x
(1/cosx+senx/cosx)(1-senx) = cos x 1/cosx-senx/cosx+senx/cosx-se x-/cosx = cosx 1/cosx-se x/cosx=cosx se co x=1 co x=1- se x co x/cosx = cosx cosx = cosx
b. secx + cosx
(tan x + cos x) / sen x = sec x + cot x
(sen x / cos x + cos x) / sen x = sec x + cot x
1/ cos x + cos x / sen x= sec x + cot x
Sec x + cot x = sec x + cot x
4. Cuando el ángulo de elevación del Sol es de 64°, un poste de teléfonos inclinado a un ángulo de 9° en
...