ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Clasificacion De Funciones


Enviado por   •  15 de Septiembre de 2012  •  617 Palabras (3 Páginas)  •  709 Visitas

Página 1 de 3

CLASIFICACION DE FUNCIONES

Función polinomial

Las funciones polinomiales están entre las expresiones mas sencillas del álgebra. Es fácil evaluarlas, solo requieren sumas multiplicaciones repetidas. Debido a esto, con frecuencia se usan para aproximar otras funciones mas complicadas. Una función polinomial es una función cuya regla esta dada por un polinomio en una variable. El grado de una función polinomial es el grado del polinomio en una variable, es decir, la potencia mas alta que aparece de x.

Definición Si una función f está definida por

donde son números reales

y n es un entero no negativo.

Entonces, f se llama una Función Polinomial de grado n.

Función Racional

En matemáticas, una función racional es una función que puede ser expresada de la forma:

donde P y Q son polinomios y x una variable, siendo Q distinto del polinomio nulo. Las funciones racionales están definidas o tienen su dominio de definición en todos los valores de x que no anulen el denominador.1

Función raíz

Las funciones raíz cuadrada las escribimos de la forma:

cuyo dominio son todos los números reales positivos (0, ∞), lo cual significa que x no puede ser negativo. Si el valor de x fuese negativo no sería una función raíz cuadrada.

Función trigonométrica

En matemáticas, las funciones trigonométricas son las funciones que se definen a fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.

Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.

Función exponencial

La función exponencial, es conocida formalmente como la función real ex, donde e es el número de Euler, aproximadamente 2.71828...; esta función tiene por dominio de definición el conjunto de los números reales, y tiene la particularidad de que su derivada es la misma función. Se denota equivalentemente como f(x)=ex o exp(x), donde e es la base de los logaritmos naturales y corresponde a la función inversa del logaritmo natural.

En términos mucho más generales, una función real E(x) se dice que es del tipo exponencial en base a si tiene la forma

siendo a, K ∈ R números reales, con a > 0. Así pues, se obtiene un abanico de exponenciales, todas ellas similares, que dependen de la base aque utilicen.

Función logarítmica

En matemáticas, el logaritmo de un número —en una base determinada— es el exponente al cual hay que elevar la base para obtener dicho número. Por ejemplo, el logaritmo de 1000 en base 10 es 3, porque 1000 es igual a 10 a la potencia 3: 1000 =

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com