GESTION DE PROCESOS ADMINISTRATIVOS DE SALUD.
Enviado por 6erman • 11 de Octubre de 2016 • Apuntes • 4.049 Palabras (17 Páginas) • 687 Visitas
TRANSVERSAL DE MATEMÁTICAS
INSTRUCTOR
ANDRÉS ASTAIZA
GESTION DE PROCESOS ADMINISTRATIVOS DE SALUD
FICHA: 1094610
POR: MAURICIO MORALES MUÑOZ
SENA
2016
Consultar como se manipula una ecuación con una variable o polinomios en general, es decir cómo se suma, se resta y se multiplica.
Resolver estos ejercicios
Si gaste un cuarto de lo que tenía y gané dos tercios del resto y aún cuento con 200 pesos. ¿Cuánto tenía?
Una persona está ubicada en una escalera y la cantidad de escalones que ve hacia abajo es cinco veces los que ve hacia arriba, si baja seis escalones entonces hay la misma cantidad de escalones hacia arriba que hacia abajo. ¿Cuántos escalones tiene tal escalera?
SOLUCIÓN:
1 suma de polinomios
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3
Q(x) = 4x − 3x2 + 2x3
1. Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2. Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3. Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3− 3x2 + 9x − 3
Resta de polinomios
La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3
P(x) − Q(x) = 3x2 + x – 3
Multiplicación de polinomios
Multiplicación de un número por un polinomio
Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.
3 · ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6
Multiplicación de un monomio por un polinomio
Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 · (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2
Multiplicación de polinomios
P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) · Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.
También podemos multiplicar polinomios de siguiente modo:
[pic 1]
División de polinomios
Resolver la división de polinomios:
P(x) = x5 + 2x3 − x − 8 Q(x) = x2 − 2x + 1
P(x): Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.
[pic 2]
A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3
Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo:
[pic 3]
Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2 x2
[pic 4]
Procedemos igual que antes.
5x3 : x2 = 5 x
[pic 5]
Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8
[pic 6]
10x − 6 es el resto, porque su grado es menor que el del divisor y por tanto no se puede continuar dividiendo.
x3+2x2 +5x+8 es el cociente.
División por Ruffini
Si el divisor es un binomio de la forma x — a, entonces utilizamos un método más breve para hacer la división, llamado regla de Ruffini.
...