ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Limite


Enviado por   •  24 de Abril de 2013  •  Ensayo  •  1.013 Palabras (5 Páginas)  •  308 Visitas

Página 1 de 5

Limite

En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros.

El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.

Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en an → a.

LIMITE DE UNA SUCESION

La definición de límite matemático para el caso de una sucesión nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto , si existe, para valores grandes de . Esta definición es muy parecida a la definición dellímite de una función cuando tiende a .

Formalmente, se dice que la sucesión tiende hasta su límite , o que converge o es convergente (a ), y se denota como:

si y sólo si para todo valor real ε>0 se puede encontrar un número natural tal que todos los términos de la sucesión, a partir de un cierto valor natural mayor que converjan a cuando crezca sin cota.

Escrito en un lenguaje formal, y de manera compacta:

Este límite, si existe, se puede demostrar que es único. Si los términos de la sucesión no convergen a ningún punto específico, entonces se dice que la sucesión es divergente.

La sucesión para converge al valor 0, como se puede ver en la ilustración.

LIMITE DE UNA FUNCION

En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.

Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:

si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.

Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com