MEDIDAS DE DISPERSIÓN
Enviado por kathleencastillo • 21 de Septiembre de 2011 • 670 Palabras (3 Páginas) • 1.352 Visitas
MEDIDAS DE DISPERSIÓN
Las medidas de tendencia central son de un gran valor representativo para una masa de observaciones. Pero el valor de esas medidas dependerá de cuan variable sea la masa de información. Por eso se establecen medidas que tratan de explicar la dispersión de los datos y son: la desviación estándar, el coeficiente de variación, el error estándar y los límites de confianza. Una medida de dispersión conveniente deberá tomar en consideración todos los datos de la serie sopesando cada dato por su distancia al centro de la distribución.
Conjunto Suma Promedio
5, 5, 5, 5, 5 25 5
4, 5, 5, 5, 6 25 5
1, 3, 4, 7, 10 25 5
En el cuadro anterior se puede observar como tres conjuntos completamente diferentes pueden generar un mismo promedio. Es por eso que el promedio debe ir siempre acompañado de algún estadístico que mida la variabilidad de los datos.
Desviación Estándar
La desviación estándar es la medida de dispersión más usada en estadística, tanto en aspectos descriptivos como analíticos. En su forma conceptual, la desviación estándar se define así:
Fórmula de trabajo para la población
Fórmula de trabajo para la muestra:
Ejemplo:
x x2
3 9
2 4
3 9
5 25
4 16
3 9
20 72
Cuando se trata de datos agrupados la formula es:
Ejemplo:
x f fx x2 fx2
32 1 32 1024 1024
37 3 111 1369 4107
42 8 336 1764 14112
47 9 423 2209 19881
52 7 364 2704 18928
57 4 228 3249 12996
62 3 186 3844 11532
67 3 201 4489 13467
72 2 144 5184 10368
Sumas 40 2025 106415
Medidas de Dispersión
Las medidas de tendencia central son de un gran valor representativo para una masa de observaciones. Pero el valor de esas medidas dependerá de cuan variable sea la masa de información. Por eso se establecen medidas que tratan de explicar la dispersión de los datos y son: la desviación estándar, el coeficiente de variación, el error estándar y los límites de confianza. Una medida de dispersión conveniente deberá tomar en consideración todos los datos de la serie sopesando cada dato por su distancia al centro de la distribución.
Conjunto Suma Promedio
5, 5, 5, 5, 5 25 5
4, 5, 5, 5, 6 25 5
1, 3, 4, 7, 10 25 5
En el cuadro anterior se puede observar como tres conjuntos completamente diferentes pueden generar un mismo promedio. Es por eso que el promedio debe ir siempre acompañado de algún estadístico que mida la variabilidad de los datos.
Desviación Estándar
La desviación estándar es la medida de dispersión más usada en estadística, tanto en aspectos descriptivos como analíticos.
...