ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Precalculo


Enviado por   •  9 de Octubre de 2012  •  2.577 Palabras (11 Páginas)  •  1.669 Visitas

Página 1 de 11

Definición formal

Las funciones pueden definirse en términos de otros objetos matemáticos, como los conjuntos y los pares ordenados. En particular, una función es un caso particular de relación binaria, luego su esta definición está basada en la que se adopte para las relaciones. En el enfoque «extensivo» se identifica una función con su gráfica:

Una función es un conjunto f de pares ordenados tal que no contiene dos pares distintos con la misma primera componente:

El dominio (la imagen) de la función es entonces el conjunto de primeras (segundas) componentes:

En la definición extensiva no aparece el concepto de codominio como conjunto potencial donde está contenido el recorrido. En algunas áreas de las matemáticas es importante preservar esta distinción, y por tanto se usa una definición distinta:7

Una función es una terna de conjuntos f = (A, B, G(f)), el dominio, el codominio y el grafo de f, tales que:

1. G(f) ⊂A × B

2. Todo elemento del dominio tiene imagen: para cada a∈A, existe un b∈B tal que (a, b) ∈G(f)

3. Esta imagen es única: si (a, b), (a, c) ∈G(f), entonces b = c.

De este modo, puede imponerse que dos funciones con el mismo grafo sean distintas por tener codominio distinto.

En matemática, RELACIÓN es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Recorrido o Rango, de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.

Dados dos conjuntos A y B una relación definida de A en B es un conjunto de parejas ordenadas (par ordenado) que hacen verdadera una proposición; dicho de otro modo, una relación es cualquier subconjunto del producto cartesiano A x B

Ejemplo 1.

Si A = {2, 3} y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.

Solución

El producto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:

A x B = {(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}

Y cada uno de los siguientes conjuntos corresponde a relaciones definidas de A en B:

R1 = {(2, 1), (3, 1)}

R2 = {(2, 4), (2, 5), (3, 4), (3, 5)}

R3 = {(2, 4), (3, 5)}

La relación R1 se puede definir como el conjunto de pares cuyo segundo elemento es 1, esto es, R1 = {(x, y) / y = 1}.

La relación R2 está formada por los pares cuyo primer componente es menor que el segundo componente, R2 = {(x, y) / x <y}

Y la relación R3 está conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R3 = {(x, y) / y = x + 2}

Así, se puede continuar enumerando relaciones definidas a partir de A x B. Como se puede ver, la regla que define la relación se puede escribir mediante ecuaciones o desigualdades que relacionan los valores de x e y. Estas reglas son un medio conveniente para ordenar en pares los elementos de los dos conjuntos.

EL DOMINIO de una relación es el conjunto de preimágenes; es decir, el conjunto formado por los elementos del conjunto de partida que están relacionados. Al conjunto de imágenes, esto es, elementos del conjunto de llegada que están relacionados, se le denomina recorrido o rango.

Ejemplo 3

Sea A = {1, 2, 3, 4} y B = {4, 5, 6, 7, 8} y R la relación definida de A en B determinada por la regla “y es el doble de x” o “y = 2x”, encontrar dominio y rango de la relación.

Solución

El total de pares ordenados que podemos formar, o producto cartesiano es:

A x B = {(1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8)}

Pero los pares que pertenecen a la relación R (y = 2x) son solo:

R = {(2, 4), (3, 6), (4, 8)}

En esta relación vemos que: “4 es el doble de 2”; esto es, “4 es la imagen de 2 bajo R”, dicho de otro modo, “2 es preimagen de 4”.

Así, el dominio y rango son:

D = {2, 3, 4}

Rg = {4, 6, 8}

Según lo que vemos, ¿Qué relación hay entre el Dominio y el conjunto de partida?

En el Dominio falta el elemento 1 del conjunto de partida, por lo tanto el Dominio es un subconjunto de A.

Otra pregunta: ¿Todo elemento del conjunto de llegada es elemento del rango?

La respuesta es no, pues en el rango faltan el 5 y el 7.

EL DOMINIOde una función es el conjunto de valores para los cuales la función está definida; es decir, son todos los valores que puede tomar la variable independiente (la x).

Por ejemplo la función f(x) = 3x2 – 5x está definida para todo número real (x puede ser cualquier número real). Así el dominio de esta función es el conjunto de todos los números reales.

En cambio, la función tiene como dominio todos los valores de x para los cuales −1<x < 2, porque aunque pueda tomar cualquier valor real diferente de –2, en su definición determina en qué intervalo está comprendida.

Si el dominio no se específica, debe entenderse que el dominio incluye a todos los números reales para los cuales la función tiene sentido.

En el caso de la función , el dominio de esta función son todos los números reales mayores o iguales a –3, ya que x + 3 debe ser mayor o igual que cero para que exista la raíz cuadrada.

Como resumen, para determinar el dominio de una función, debemos considerar lo siguiente:

Si la función tiene radicales de índice par, el dominio está conformado por todos los números reales para los cuales la cantidad subradical sea mayor o igual a cero.

Si la función es un polinomio; una función de la forma f(x) = a0 + a1x + a2x2 +...+ anxn (donde a0, a1, a2,..., an son constantes y n un entero no negativo), el dominio está conformado por el conjunto de todos los números reales.

Si la función es racional; esto es, si es el cociente de dos polinomios, el dominio está conformado por todos los números reales para los cuales el denominador sea diferente de cero.

EL RANGO(recorrido o ámbito) es el conjunto formado por todas las imágenes; es decir, es el conjunto conformado por todos los valores que puede tomar la variable dependiente; estos valores están determinados además, por el dominio de la función.

Ejemplo

Identificar dominio y rango de la función

Veamos:

Como

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com