Trabajo De Matematica
Enviado por Franciscomontiel • 7 de Noviembre de 2013 • 2.057 Palabras (9 Páginas) • 238 Visitas
Probabilidad
Es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la física, la matemática, las ciencias y la filosofía para sacar conclusiones sobre la probabilidad discreta de sucesos potenciales y la mecánica subyacente discreta de sistemas complejos.
Regla de Laplace
La regla de Laplace establece que:
⦁ La probabilidad de ocurrencia de un suceso imposible es 0.
⦁ La probabilidad de ocurrencia de un suceso seguro es 1, es decir, P(A) = 1.
Para aplicar la regla de Laplace es necesario que los experimentos den lugar a sucesos equiprobables, es decir, que todos tengan o posean la misma probabilidad.
⦁ La probabilidad de que ocurra un suceso se calcula así:
P(A) = Nº de casos favorables / Nº de resultados posibles
Esto significa que: la probabilidad del evento A es igual al cociente del número de casos favorables (los casos dónde sucede A) sobre el total de casos posibles.
Distribución binomial
La probabilidad de ocurrencia de una combinación específica de eventos independientes y mutuamente excluyentes se determina con la distribución binomial, que es aquella donde hay solo dos posibilidades, tales como masculino/femenino o si/no.
1. Hay dos resultados posibles mutuamente excluyentes en cada ensayo u observación.
2. La serie de ensayos u observaciones constituyen eventos independientes.
3. La probabilidad de éxito permanece constante de ensayo a ensayo, es decir el proceso es estacionario.
Para aplicar esta distribución al cálculo de la probabilidad de obtener un número dado de éxitos en una serie de experimentos en un proceso de Bermnoulli, se requieren tres valores: el número designado de éxitos (m), el número de ensayos y observaciones (n); y la probabilidad de éxito en cada ensayo (p).
Entonces la probabilidad de que ocurran m éxitos en un experimento de n ensayos es:
P (x = m) = (nCm)(Pm)(1−P)n−m
Siendo: nCm el número total de combinaciones posibles de m elementos en un conjunto de n elementos.
En otras palabras P(x = m) = [n!/(m!(n−m)!)](pm)(1−p)n−m
Ejemplo. La probabilidad de que un alumno apruebe la asignatura Cálculo de Probabilidades es de 0,15. Si en un semestre intensivo se inscriben 15 alumnos ¿Cuál es la probabilidad de que aprueben 10 de ellos?
P(x = 10) = 15C10(0,15)10(0,85)5 = 10!/(10!(15−10)!)(0,15)10(0,85)5 = 7,68 * 10−6 Generalmente existe un interés en la probabilidad acumulada de "m o más " éxitos o "m o menos" éxitos en n ensayos. En tal caso debemos tomar en cuenta que:
P(x < m) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) +....+ P(x = m − 1)
P(x > m) = P(x = m+ 1) + P(x = m+ 2) + P(x = m+3) +....+ P(x = n)
P(x ≤ m) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) +....+ P(x = m)
P(x ≥ m) = P(x = m) + P(x = m+1) + P(x = m+2) +....+ P(x = n)
Supongamos que del ejemplo anterior se desea saber la probabilidad de que aprueben:
a.− al menos 5
b.− más de 12
a.− la probabilidad de que aprueben al menos 5 es:
P(x ≥ 5) es decir, que:
1 - P(x < 5) = 1 - [P(x = 0)+P(x = 1)+P(x = 2)+P(x = 3)+P(x = 4)] =
1 - [0,0874 + 0,2312 + 0,2856 + 0,2184 + 0,1156] = 0,0618
Nota: Al menos, a lo menos y por lo menos son locuciones adverbiales sinónimas.
Suceso elemental
Suceso elemental es cada uno de los elementos que forman parte del espacio muestral.
Ejemplo:
Tirando un dado un suceso elemental es sacar 5.
Suceso compuesto
Suceso compuesto es cualquier subconjunto del espacio muestral.
Ejemplo:
Tirando un dado un suceso sería que saliera par, otro, obtener múltiplo de 3.
Suceso seguro
Suceso seguro, E, está formado por todos los posibles resultados (es decir, por el espacio muestral).
Ejemplo:
Tirando un dado obtener una puntuación que sea menor que 7.
Suceso imposible
Es el que no tiene ningún elemento.
Ejemplo:
Tirando un dado obtener una puntuación igual a 7.
Sucesos compatibles
Dos sucesos, A y B, son compatibles cuando tienen algún suceso elemental común.
Ejemplo:
Si A es sacar puntuación par al tirar un dado y B es obtener múltiplo de 3, A y B son compatibles porque el 6 es un suceso elemental común.
Sucesos incompatibles
Dos sucesos, A y B, son incompatibles cuando no tienen ningún elemento en común.
Ejemplo:
Si A es sacar puntuación par al tirar un dado y B es obtener múltiplo de 5, A y B son incompatibles.
Sucesos independientes
Dos sucesos, A y B, son independientes cuando la probabilidad de que suceda A no se ve afectada porque haya sucedido o no B.
Ejemplo:
Al lazar dos dados los resultados son independientes.
Sucesos dependientes
Dos sucesos, A y B, son dependientes cuando la probabilidad de que suceda A se ve afectada porque haya sucedido o no B.
Ejemplo:
Extraer dos cartas de una baraja, sin reposición, son sucesos dependientes.
Suceso contrario
El suceso contrario a A es otro suceso que se realiza cuando no se realiza A. Se denota por .
Ejemplo:
Son sucesos contrarios sacar par e impar al lanzar un dado.
Espacio muestral
Es el conjunto de todos los posibles resultados de una experiencia aleatoria, lo representaremos por E (o bien por la letra griega Ω).
Ejemplos:
Espacio muestral de una moneda:
E = {C, X}.
Espacio muestral de un dado:
E = {1, 2, 3, 4, 5, 6}.
Suceso aleatorio
Es cualquier subconjunto del espacio muestral.
Una bolsa contiene bolas blancas y negras. Se extraen sucesivamente tres bolas. Calcular:
1. El espacio muestral.
E = {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b); (n, n,n)}
2. El suceso A = {extraer tres bolas del mismo color}.
A = {(b,b,b); (n, n,n)}
3. El suceso B = {extraer al menos una bola blanca}.
B= {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b)}
4. El suceso C = {extraer una sola bola negra}.
C = {(b,b,n); (b,n,b); (n,b,b)}
Experimentos aleatorios
Son aquellos en los que no se puede predecir el resultado, ya que éste depende del azar.
Ejemplos:
Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz.
Si lanzamos un dado tampoco podemos determinar el resultado que vamos
...