Trabajo De Polinomios
Enviado por jasosky • 20 de Junio de 2012 • 1.793 Palabras (8 Páginas) • 2.077 Visitas
REPÜBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA DEFENSA
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA
DE LA FUERZA ARMADA
UNEFA
NUCLEO - LARA
Matemáticas
Estudiante
Jasosky A. Túa
C.I.: 17.228.830
Ing. Carlos Granado
SECCIÓN: CINU-N1ES
Definición de monomio
Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
2x2 y3 z
Definición de polinomio
Un polinomio es una expresión algebraica compuesta de dos o más monomios.
Trinomio
Un trinomio es un polinomio que consta de tres monomios.
P(x) = 2x2 + 3x + 5
Partes de un monomio
Coeficiente
El coeficiente del monomio es el número que aparece multiplicando a las variables.
Parte literal
La parte literal está constituida por las letras y sus exponentes.
Grado
El grado de un monomio es la suma de todos los exponentes de las letras o variables.
El grado de 2x2 y3 z es: 2 + 3 + 1 = 6
Monomios semejantes
Dos monomios son semejantes cuando tienen la misma parte literal.
2x2 y3 z es semejante a 5x2 y3 z
Suma de monomios
Sólo podemos sumar monomios semejantes.
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
axn + bxn = (a + b)xn
2x2 y3 z + 3x2 y3 z = 5x2 y3 z
Si los monomios no son semejantes se obtiene un polinomio.
2x2 y3 + 3x2 y3 z
Producto de un número por un monomio
El producto de un número por un monomio es otro monomio semejante cuyo coeficiente es el producto del coeficiente de monomio por el número.
5 • (2x2 y3 z) = 10x2 y3 z
Multiplicación de monomios
La multiplicación de monomios es otro monomio que tiene por coeficiente el producto de los coeficientes y cuya parte literal se obtiene multiplicando las potencias que tenga la misma base.
axn • bxm = (a • b)xn + m
(5x2 y3 z) • (2 y2 z2) = 10 x2 y5 z3
División de monomios
Sólo se pueden dividir monomios con la misma parte literal y con el grado del dividendo mayor o igual que el grado de la variable correspondiente del divisor.
La división de monomios es otro monomio que tiene por coeficiente el cociente de los coeficientes y cuya parte literal se obtiene dividiendo las potencias que tenga la misma base.
axn : bxm = (a : b)xn − m
Si el grado del divisor es mayor, obtenemos una fracción algebraica.
Potencia de un monomio
Para realizar la potencia de un monomio se eleva, cada elemento de éste, al exponente de la potencia.
(axn)m = am • xn • m
(2x3)3 = 23 • (x3)3 = 8x9
(−3x2)3 = (−3)3 • (x2)3 = −27x6
Un polinomio es una expresión algebraica de la forma:
P(x) = an xn + an - 1 xn - 1 + an - 2 xn - 2 + ... + a1 x1 + a0
Siendo an, an -1 ... a1 , ao números, llamados coeficientes.
n un número natural.
x la variable o indeterminada.
an es el coeficiente principal.
ao es el término independiente.
Grado de un polinomio
El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.
Clasificación de un polinomio según su grado
Primer grado
P(x) = 3x + 2
Segundo grado
P(x) = 2x2 + 3x + 2
Tercer grado
P(x) = x3 − 2x2+ 3x + 2
Tipos de polinomios
Polinomio nulo
Es aquel polinomio que tiene todos sus coeficientes nulos.
Polinomio homogéneo
Es aquel polinomio en el que todos sus términos o monomios son del mismo grado.
P(x) = 2x2 + 3xy
Polinomio heterogéneo
Es aquel polinomio en el que sus términos no son del miso grado.
P(x) = 2x3 + 3x2 – 3
Polinomio completo
Es aquel polinomio que tiene todos los términos desde el término independiente hasta el término de mayor grado.
P(x) = 2x3 + 3x2 + 5x - 3
Polinomio ordenado
Un polinomio está ordenado si los monomios que lo forman están escritos de mayor a menor grado.
P(x) = 2x3 + 5x - 3
Polinomios iguales
Dos polinomios son iguales si verifican:
1Los dos polinomios tienen el mismo grado.
2Los coeficientes de los términos del mismo grado son iguales.
P(x) = 2x3 + 5x − 3
Q(x) = 5x − 3 + 2x3
Polinomios semejantes
Dos polinomios son semejantes si verifican que tienen la misma parte literal.
P(x) = 2x3 + 5x – 3 Q(x) = 5x3 − 2x − 7
Valor numérico de un polinomio
Es el resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x) = 2x3 + 5x − 3 ; x = 1
P(1) = 2 • 13 + 5 • 1 − 3 = 2 + 5 - 3 = 4
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3
...