ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Triángulos


Enviado por   •  16 de Marzo de 2015  •  5.137 Palabras (21 Páginas)  •  218 Visitas

Página 1 de 21

Convención de escritura[editar]

Triángulo: ABC. Lados: a, b, c. Ángulos: \widehat{\alpha}, \widehat{\beta}, \widehat{\gamma} \,.

Los puntos principales de una figura geométrica, como los vértices de un polígono, suelen ser designados por letras latinas mayúsculas: A, B, C,...

Un triángulo se nombra entonces como cualquier otro polígono, designando sucesivamente sus vértices, por ejemplo ABC. En el caso del triángulo, los vértices pueden darse en cualquier orden, porque cualquiera de las 6 maneras posibles (ABC, ACB, BAC, BCA, CAB, CBA), corresponde a un recorrido de su perímetro. Esto ya no es cierto para polígonos con más vértices.

Los lados del triángulo se denotan, como todos los segmentos, por sus extremos: AB, BC y AC.

Para nombrar la longitud de un lado, por lo general se utiliza el nombre del vértice opuesto, convertido a minúscula latina: a para BC, b para AC, c para AB.

La notación general para el ángulo entre dos segmentos OP y OQ que comparten el extremo O es \widehat{POQ} .\,

También es posible utilizar una letra minúscula -habitualmente una letra griega- coronada por un acento circunflejo (en rigor, los ángulos deben ser designados por letras mayúsculas y su medida por minúsculas, pero a menudo se utilizan los mismos nombres para los dos con el fin de simplificar la notación). En el caso de un triángulo, el ángulo entre dos lados todavía puede, por tolerancia y en ausencia de ambigüedad, ser designado por el nombre del vértice común, coronado por un acento circunflejo. En resumen, en el ejemplo se pueden observar los ángulos:

\widehat{\alpha} = \widehat{a} = \widehat{A} = \widehat{BAC} ,\ \widehat{\beta} = \widehat{b} = \widehat{B} = \widehat{ABC} ,\ \widehat{\gamma} = \widehat{c} = \widehat{C} = \widehat{ACB} . \,

Triángulos — Resumen de convenciones de designación

Vértices \text{A} \text{B} \text{C}

Lados (como segmento) \text{BC} \text{AC} \text{AB}

Lados (como longitud) a b c

Ángulos \widehat{\alpha} = \widehat{a} = \widehat{A} = \widehat{BAC} \widehat{\beta} = \widehat{b} = \widehat{B} = \widehat{ABC} \widehat{\gamma} = \widehat{c} = \widehat{C} = \widehat{ACB}

§Clasificación de los triángulos[editar]

Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos.

§Por las longitudes de sus lados[editar]

Por las longitudes de sus lados, todo triángulo se clasifica:

Como triángulo equilátero, cuando los tres lados del triángulo tienen una misma longitud (los tres ángulos internos miden 60 grados o \pi/3\, radianes).

Como triángulo isósceles (del griego ἴσος "igual" y σκέλη "piernas", es decir, "con dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales3 ).

Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).

Triángulo equilátero. Triángulo isósceles. Triángulo escaleno.

Equilátero Isósceles Escaleno

§Por la amplitud de sus ángulos[editar]

Por la amplitud de sus ángulos los triángulos se clasifican en:

(Clasificación por amplitud de sus ángulos)

Triángulos

Rectángulos

Oblicuángulos

Obtusángulos

Acutángulos

Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.

Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores son rectos (90°). Por ello, los triángulos obtusángulos y acutángulos son oblicuángulos.

Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los otros dos son agudos (menores de 90°).

Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°.

Triángulo Rectángulo Triángulo Obtusángulo Triángulo Acutángulo

Rectángulo Obtusángulo Acutángulo

\underbrace{\qquad \qquad \qquad \qquad \qquad \qquad}_{}

Oblicuángulos

§Clasificación según los lados y los ángulos[editar]

Los triángulos acutángulos pueden ser:

Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto. Este triángulo es simétrico respecto de su altura.

Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene eje de simetría.

Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales; las tres alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales).

Los triángulos rectángulos pueden ser:

Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por el ángulo recto.

Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son diferentes.

Los triángulos obtusángulos pueden ser:

Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que forman el ángulo obtuso; el otro lado es mayor que éstos dos.

Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.

Triángulo equilátero isósceles escaleno

acutángulo Triángulo equilátero.svg Triángulo acutángulo isósceles.svg Triángulo acutángulo escaleno.svg

rectángulo Triángulo rectángulo isósceles.svg Triángulo rectángulo escaleno.svg

obtusángulo Triángulo obtusángulo isósceles.svg Triángulo obtusángulo escaleno.svg

§Clasificación según la calidad del triángulo[editar]

La medida de la calidad del triángulo (abreviada como CT) está determinada por el triple producto de las sumas de dos de sus lados menos el tercero, dividido entre el producto de todos sus lados; y se representa mediante la siguiente ecuación:

CT = \frac{(b+c-a)(c+a-b)(a+b-c)}{abc}

donde a, b, c son las longitudes de los lados del triángulo.

...

Descargar como (para miembros actualizados) txt (35 Kb)
Leer 20 páginas más »
Disponible sólo en Clubensayos.com