TRABAJO COLABORATIVO III LOGICA Y ARGUMENTACION
Enviado por davidquim84 • 25 de Noviembre de 2015 • Apuntes • 1.585 Palabras (7 Páginas) • 187 Visitas
TRABAJO COLABORATIVO III
LOGICA Y ARGUMENTACION
FASE GRUPAL
PRESENTADO POR:
AIDA LORENA VÉLEZ
CC.33.917.345
MANUEL ALEJANDRO HURTADO
CC. 1.116.442.486
GABRIEL DAVID PULGARIN
CC. 4.514.825
PRESENTADO A:
MIGUEL ARIZA TRIVIÑO
PENSAMIENTO LÓGICO Y MATEMÁTICO
200611_491
PROGRAMA INGENIERÍA INDUSTRIAL
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA (UNAD)
NOVIEMBRE 15 DE 2015
INTRODUCCION
Las personas constantemente tomamos decisiones acerca de lo que creemos que es verdadero en distintos aspectos de nuestras vidas. Aunque todo el mundo está de acuerdo en preferir creer lo que es verdad, con frecuencia discrepamos sobre lo que es verdadero en casos particulares. Si bien muchas de nuestras convicciones fundamentales sobre el mundo que nos rodea las adquirimos de cualquier manera en lugar de mediante el uso de la razón, todos reconocemos que nuestras creencias sobre el mundo y los hechos que acaecen en el mismo mundo están de algún modo ligadas.
Podemos estar de acuerdo con el camino que sigue un razonamiento aunque discrepemos de sus puntos de partida y de llegada. Es decir, es posible distinguir los razonamientos válidos de los inválidos independientemente de que estemos o no de acuerdo con el contenido que expresen dichos razonamientos. Dicho de forma muy simple, la lógica es la disciplina que estudia esta distinción determinando las condiciones bajo las cuales la verdad de ciertas creencias conduce con certeza a la verdad de alguna otra creencia. La lógica estudia, pues, los principios de los razonamientos correctos.
Hay que apresurarse a señalar que la lógica no garantiza que siempre lleguemos a conclusiones verdaderas, ya que algunas veces las creencias de las que partimos son erróneas (como suponer que todos los mamíferos son seres racionales, en el ejemplo anterior). Lo que sí garantiza la lógica es que siguiendo los principios de los razonamientos correctos, no surjan otros errores aparte de los derivados de la posible falsedad de los conocimientos que sustancian nuestros razonamientos.
OBJETIVOS
- Identificar y utilizar en forma clara las reglas de inferencia lógica por inducción y deducción en formulaciones y demostraciones de razonamientos válidos en situaciones específicas.
- Aprender a interpretar de forma clara los planteamientos lógicos usando proposiciones simples con premisas razonables y establecer una secuencia logia de argumentación.
ACTIVIDAD GRUPAL
El Director del Curso de Pensamiento Lógico y Matemático de la Universidad UNAD es el encargado de muchas de las labores más importantes. Si es así, entonces ser Director de Curso es un cargo difícil de manejar. Los estudiantes dicen que, o los Directores de Curso son personas de las que depende el funcionamiento curricular de la Universidad, o que sólo se dedican a aprobar y reprobar a los estudiantes. Pero si ellos sólo se dedican a aprobar y reprobar a los estudiantes, entonces ser Director de Curso no es un cargo difícil de manejar. Además, si la Dirección de Curso Académico no es un cargo que sólo quienes se han preparado para ello lo merecen, entonces sería falso que los estudiantes digan que los Directores de Curso son personas de las que depende la Universidad y que el Director de Curso es el encargado de muchas de las labores más importantes. Por lo tanto, la Dirección de Curso Académico es un cargo que sólo quienes se han preparado para ello lo merecen.
Proposiciones simples:
- p. El Director del Curso de Pensamiento Lógico y Matemático de la Universidad UNAD es el encargado de muchas de las labores más importantes.
- q. ser Director de Curso es un cargo difícil de manejar
- r. Los estudiantes dicen que, o los Directores de Curso son personas de las que depende el funcionamiento curricular de la Universidad
- s. Los estudiantes dicen que, o que sólo se dedican a aprobar y reprobar a los estudiantes.
- t. la Dirección de Curso Académico es un cargo que sólo quienes se han preparado para ello lo merecen.
PREMISA 1: p→q
PREMISA 2: r˅s
PREMISA 3: s→ ̴ q
PREMISA 4: ̴ t → ( ̴ r → ˄ ̴ p )
CONCLUSION: t
[(p→q)˄(r˅s)˄(s→ ̴ q)˄ ̴ t → ( ̴ r → ˄ ̴ p )→ t]
TABLA DE LA VERDAD
p | q | r | s | t | [(p→q)˄(r˅s)˄(s→ ̴ q)˄ ̴ t → ( ̴ r → ˄ ̴ p )→ t] |
V | V | V | V | V | V |
V | V | V | V | F | F |
V | V | V | F | V | V |
V | V | V | F | F | V |
V | V | F | V | V | V |
V | V | F | V | F | F |
V | V | F | F | V | V |
V | V | F | F | F | F |
V | F | V | V | V | V |
V | F | V | V | F | F |
V | F | V | F | V | V |
V | F | V | F | F | F |
V | F | F | V | V | V |
V | F | F | V | F | F |
V | F | F | F | V | V |
V | F | F | F | F | F |
F | V | V | V | V | V |
F | V | V | V | F | F |
F | V | V | F | V | V |
F | V | V | F | F | F |
F | V | F | V | V | V |
F | V | F | V | F | F |
F | V | F | F | V | V |
F | V | F | F | F | F |
F | F | V | V | V | V |
F | F | V | V | F | V |
F | F | V | F | V | V |
F | F | V | F | F | V |
F | F | F | V | V | V |
F | F | F | V | F | F |
F | F | F | F | V | V |
F | F | F | F | F | F |
De lo anterior podemos argumentar que el planteamiento es una CONTINGENCIA
...