Binomio De Newton
Enviado por yannari • 8 de Junio de 2014 • 633 Palabras (3 Páginas) • 691 Visitas
Introducción
Un binomio es un polinomio formado por dos términos. Newton desarrolló la fórmula para calcular las potencias de un binomio utilizando números combinatorios.
La fórmula del binomio de Newton sirve para calcular las potencias de un binomio utilizando números combinatorios. Mediante esta fórmula podemos expresar la potencia (a + b)n como una suma de varios términos, cuyos coeficientes se pueden hallar utilizando el triángulo de Tartaglia.
En este sentido, en el presente trabajo, serán explicados cada uno de los temas que estén relacionados al binomio de Newton, como lo es el triángulo de tartaglia, números combinatorios, factorial de un número, etc. Con esto se plantea comprender sus aplicaciones, formulas y cómo se deben realizar.
Binomio de newton
El binomio de Newton es una fórmula que se utiliza para hacer el desarrollo de la potencia de un binomio elevado a una potencia cualquiera de exponente natural. Es decir, se trata de una fórmula para desarrollar la expresión: (x + a)n, n perteneciente a N .
(x+a)^n=∑_(k=0)^n▒〖(n¦k) x^k a^(n-k) 〗
Es importante resaltar que a y b pueden ser números, letras o expresiones algebraicas cualesquiera. Así, también podremos desarrollar, por ejemplo, expresiones como: (3b+6x)n o (4b-36ª)n
*(a + b)0 = 1
*(a + b)1 = a + b
*(a + b)2 = (a + b)(a + b) = a2 + 2ab + b2
*(a + b)3 = (a + b)2(a + b) = (a2 + 2ab + b2)(a + b) = a3 + 3a2b + 3ab2 + b3
*(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
*(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
*(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 +b6
Triángulo de tartáglia
Es la representación de los coeficientes binomiales ordenados en forma triangular, es decir, este no es un triángulo en el sentido geométrico de la palabra, sino una colección de números dispuestos en forma triangular que se obtienen de una manera muy sencilla.
Ejemplo:
El triángulo de tartáglia es infinito, se pueden construir todas las filas que sean necesarias según el caso.
A partir de la tercera fila, el método de construcción es el siguiente:
*Primer número: 1.
*Números siguientes: la suma de los dos que se encuentran inmediatamente por encima.
*Último número: 1.
Se puede observar que además de que cada fila empieza y termina con el número 1, los números que aparecen forman una fila simétrica, o sea, el primero es igual al último, el segundo igual al penúltimo, el tercero igual al antepenúltimo, etc.
Este triángulo está relacionado con el desarrollo de las potencias
...