ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Caos Fractales Y Cosas Raras


Enviado por   •  12 de Mayo de 2013  •  36.593 Palabras (147 Páginas)  •  495 Visitas

Página 1 de 147

CAOS, FRACTALES Y COSAS RARAS

Autor: ELIEZER BRAUN

EDICIONES

Primera edición, 1996

La Ciencia desde de México es proyecto y propiedad del Fondo de Cultura Económica, al que pertenecen también sus derechos. Se publica con los auspicios de la Secretaría de Educación Pública y del Consejo Nacional de Ciencia y Tecnología.

D.R. © FONDO DE CULTURA ECONÓMICA Carretera Picacho-Ajusco 227; 14200 México, D.F.

ISBN 968-16-5070-0

Impreso en México

I. INTRODUCCIÓN

HACE alrededor de 20 años se ha estado produciendo una revolución en el mundo de las ideas científicas que no ha sido conocida por el público en general. Han surgido ideas nuevas muy útiles para describir y entender la multitud de fenómenos que se da en diversas ramas del conocimiento. Nos referimos a los fractales y al caos. Como verá el lector, las aplicaciones se han dado en los campos de la física, las matemáticas, la biología, la medicina, la economía, la lingüística, por mencionar sólo algunos. Se podrá apreciar la gran amplitud de temas que es posible tratar con estos novedosos conceptos.

En todos los campos del conocimiento que hemos mencionado se han dado situaciones que al ser tratadas con los procedimientos en uso no han podido ser explicadas satisfactoriamente. Sólo con el advenimiento de las ideas nuevas es que ha sido posible progresar en el conocimiento de fenómenos antes no comprendidos.

En vista de lo antes dicho, consideraremos una gran variedad de fenómenos y situaciones. El propósito del presente libro es dar una explicación somera, accesible al público no especialista, de los antecedentes de nuestro sujeto de estudio. Será necesario utilizar algunas operaciones matemáticas que no van más allá de la aritmética; sin embargo, el lector no debe espantarse ya que se le llevará de la mano en forma gradual.

El tratamiento formal de los fractales y del caos se ha convertido en una rama muy compleja de las matemáticas. Por supuesto que no entraremos en estos espinosos temas. Así, en el caso del caos no trataremos de hablar en términos del espacio fase. En este libro los conceptos detrás de estos formalismos matemáticos los trataremos de manera accesible.

En el capítulo II se repasan algunos conceptos elementales de la geometría que no son conocidos.

En los capítulos III y IV. presentamos algunos hechos raros que, a pesar de que mucha gente los había conocido, no fueron tratados adecuadamente. La posición que asumieron muchos científicos fue no hacer caso a los hechos que no se ajustaban con la forma de pensar preponderante en su época. Una vez que en 1975 Benoit Mandelbrot los consideró a fondo, se inició la era de los fractales. Estos casos ilustran una situación que ha ocurrido en la historia de la ciencia muchas veces: se tiene la evidencia de algún fenómeno, pero ésta no se ve y se soslaya su tratamiento.

En los capítulos V y VI se presenta el concepto de fractal y de similitud. La idea de fractal nos puede parecer muy extraña, máxime si empezamos a ver algunas de sus características: hay líneas con longitud y cosas semejantes. Sin embargo, esta extrañeza se debe a que nos hemos limitado mentalmente a considerar situaciones que son realmente ideales, como las figuras geométricas. En la naturaleza estas figuras son la excepción, mientras que la mayoría de las figuras que hay a nuestro alrededor son fractales. Aunque parezca increíble, ¡este hecho tan contundente no había sido considerado en serio durante muchos siglos por la humanidad!

En el capítulo VII se presenta el concepto de las condiciones iniciales, crucial en la descripción de fenómenos físicos. Este concepto lo descubrió Isaac Newton al resolver las ecuaciones que describen las leyes que llevan su nombre. Él ya se había percatado de algunos puntos finos que mencionaremos en este capítulo.

En los capítulos VIII y IX presentamos en forma muy elemental, y utilizando principalmente operaciones aritméticas tales como sumas, restas y multiplicaciones, el concepto de caos. Aquí descubriremos hechos cruciales, como las bifurcaciones que, con el tiempo, llevan al caos. Nos daremos cuenta de que el comportamiento de un fenómeno dado puede ser estable o caótico, dependiendo de los valores de los parámetros que lo describen.

Una creencia muy importante en la ciencia es que una teoría que describe los fenómenos de la naturaleza debe poder hacer predicciones acerca del desarrollo futuro del sistema que se esté tratando. En el capítulo X se profundiza lo que significa la predictibilidad. A esto quedan asociados los conceptos de determinismo e indeterminismo. Estos conceptos se puntualizan en ese capítulo y la relación entre el caos y los fractales se ilustra en el capítulo XI.

Los antecedentes que se han presentado hasta este momento nos servirán para aplicarlos en el resto del libro a una serie de situaciones de gran diversidad y así, en el capítulo XII presentamos un ejemplo de aritmética, la secuencia de Fibonacci, que se podría creer que es sólo un tema divertido. Sin embargo, como se ilustra en el capítulo XIII, su aplicación a la ciencia de los materiales, para entender un descubrimiento hecho en 1984, es crucial; nos referimos a un nuevo tipo de arreglo de la materia que se llama cuasicristal.

En el capítulo XIV se introduce el concepto matemático de la ley de potencias, y hacemos ver que tiene propiedades fractales. Las aplicaciones de las leyes de potencias se producen en varios campos, aun en la música, hecho que se explica en el capítulo XV al estudiar la estructura de famosas obras de grandes compositores.

Las características de los fenómenos caóticos que se trataron en el capítulo VIII se aplican a varias situaciones. La primera de ellas es la turbulencia, tratada en el capítulo XV. Desde mediados del siglo pasado se había intentado sin éxito comprender este fenómeno. Sólo a partir de la década de 1990, con ayuda de los novedosos conceptos del caos, se ha podido empezar a vislumbrar la manera en que se puede entender este fenómeno, cuya comprensión es determinante en muchas aplicaciones prácticas como, por ejemplo, la aviación.

Otro empleo de las ideas del caos se hace en la biología y en particular en la medicina, como se puede apreciar en el capítulo XVII. Fenómenos cardiológicos se han empezado a ver desde otras perspectivas que han podido dar un entendimiento más profundo del comportamiento dinámico del corazón y que posiblemente puedan tener aplicaciones prácticas en el tratamiento de varias enfermedades.

En la naturaleza biológica se han encontrado muchas estructuras fractales. A pesar de que estas estructuras, como por ejemplo la de los bronquios,

...

Descargar como (para miembros actualizados) txt (213 Kb)
Leer 146 páginas más »
Disponible sólo en Clubensayos.com