Didactica De La Matematica
Enviado por benjjamin • 27 de Mayo de 2013 • 2.097 Palabras (9 Páginas) • 340 Visitas
Introducción
En el proceso de enseñanza-aprendizaje de las matemáticas y especialmente la geometría, el docente necesita recurrir a las herramientas más diversas con la finalidad de conseguir que sus estudiantes obtengas aprendizajes significativos.
Las características que presentan los educandos de los 3 primeros grados de educación primaria impiden que estos aprendizajes se produzcan exclusivamente mediante actividades de lápiz y papel. Decimos entonces que la manipulación de materiales concretos, juegos didácticos con contenido geométrico, actividades contextualizadoras y tareas.
IMPORTANCIA DE LA GEOMETRÍA EN EL CURRICULUM
La necesidad de la enseñanza de la geometría en el ámbito escolar responde, en primer lugar, al papel que la geometría desempeña en la vida cotidiana.
Un conocimiento geométrico básico es indispensable para desenvolverse en la vida cotidiana: para orientarse reflexivamente en el espacio; para hacer estimaciones sobre formas y distancias; para hacer apreciaciones y cálculos relativos a la distribución de los objetos en el espacio...
La geometría está presente en múltiples ámbitos del sistema productivo de nuestras actuales sociedades (producción industrial, diseño, arquitectura, topografía, etc...).
La forma geométrica es también un componente esencial del arte, de las artes plásticas, y representa un aspecto importante en el estudio de los elementos de la naturaleza.
UN ACERCAMIENTO EXPERIMENTAL, INTUITIVO A LA GEOMETRÍA
La enseñanza de la Geometría ha tenido tradicionalmente un fuerte carácter deductivo. En educación secundaria, la Geometría se ha venido apoyando en el lenguaje del álgebra, en el álgebra vectorial. En primaria, aún sin ese carácter algebraico, formal, se ha fomentado excesivamente el aprendizaje memorístico de conceptos, teoremas y fórmulas; la simple apoyatura de unos conceptos en otros previos; y la temprana eliminación de la intuición como instrumento de acceso al conocimiento geométrico, tratando de acelerar la adquisición de tales conceptos, teoremas y fórmulas, como si en ellas estuviera condensado el verdadero saber geométrico.
Las investigaciones sobre el proceso de construcción del pensamiento geométrico parecen indicar, no obstante, que éste sigue una evolución muy lenta desde unas formas intuitivas iniciales de pensamiento, hasta las formas deductivas finales, y que éstas corresponden a niveles escolares bastante más avanzados que los que estamos considerando aquí. De manera que nosotros entendemos que en Educación Primaria hay que escapar de las interpretaciones meramente deductivas e ir a una geometría de carácter experimental e intuitiva.
El espacio del niño está lleno de elementos geométricos, con significado concreto para él como lo son: puertas, ventanas, mesas, pelotas, entre otras. En su entorno cotidiano, en su sector, dentro de su casa, en su colegio, en sus áreas de juego, aprende a organizar mentalmente el espacio que le rodea y a orientarse en él.
Ese es el contexto que nos parece especialmente útil para desarrollar las enseñanzas geométricas, de una forma que resulte significativa para los alumnos. El estudio de su entorno próximo y familiar, por la motivación e interés que puede despertar y por ser fuente inagotable de objetos susceptibles de observación y manipulación.
A partir de situaciones que resulten familiares para los alumnos (recorridos habituales, formas de objetos conocidos...) y mediante actividades manipulativas, lúdicas (plegado, recorte, modelado, etc), el profesor puede fomentar el desarrollo de los conceptos geométricos contemplados en el currículo de esta etapa educativa.
LOS CONCEPTOS GEOMÉTRICOS, ABSTRACTOS Y DE DIFÍCIL ADQUISICIÓN
Los objetos geométricos básicos (punto, línea y superficie, paralelismo, ángulo, entre otros), son nociones aparentemente muy elementales, pero que en realidad son muy complejas, por su elevado nivel de abstracción.
La noción de punto, por ejemplo, es una buena muestra de lo abstracto de los elementos geométricos. El punto, como ente geométrico sin dimensiones, carente de forma o con una forma muy regular (esférica), simple indicador de la posición en el espacio, no existe en la realidad material. En la realidad todo ente material tiene un tamaño y una forma: por muy pequeño que dibujemos el punto siempre podrá dividirse en partes más pequeñas; si consideramos el punto esférico (o circular), esas partes que se obtienen al dividirlo dejan de tener esa forma esférica (o circular).
La rectitud tampoco existe en la realidad material. Cualquier línea material, contemplada con una lupa suficientemente potente, aparece llena de curvaturas.
La noción de paralelismo aparece para los alumnos como una noción difícil, por la infinitud de la línea recta. Los alumnos de estas edades no captan con facilidad el carácter infinito de la recta. En primer lugar por un problema de fijación mental derivada de sus propias percepciones. Y en segundo lugar por un problema de capacidad lógica, ya que el alumno se encuentra en estas edades en el período llamado por Piaget de "lógica concreta", en el que no cabe la consideración de entidades tan abstractas como la infinitud.
Esta misma dificultad es la que aparece al considerar los ángulos. No les resulta fácil comprender la independencia del ángulo respecto a la longitud de sus lados, en primer lugar por cuestiones de tipo perceptivo, y en segundo lugar por ese problema conceptual de la infinitud de la recta que se está señalando.
En realidad, estos ejemplos vienen a indicar la dificultad de enseñanza de la geometría en Primaria, por la contradicción existente entre el fuerte carácter abstracto de esta materia (que como toda disciplina matemática aparece como un sistema conceptual abstracto, formal, independiente de la realidad física) y la necesidad de aproximarla de una forma intuitiva, experimental a los alumnos, lo que obliga a una simplificación de sus elementos conceptuales.
LA EDUCACIÓN GEOMÉTRICA EN LOS PRIMEROS NIVELES. ORIENTACIÓN EN EL ESPACIO. JUEGO PSICOMOTRIZ
La orientación espacial, fruto de una paulatina organización mental del espacio exterior, es un objetivo central de la educación geométrica en los primeros niveles educativos. El espacio aparece para los niños pequeños como algo desestructurado, carente de una organización objetiva. Es un espacio subjetivo, ligado a sus vivencias afectivas y a sus acciones. Un espacio en el que los objetos carecen de una forma y un tamaño precisos, en función de la perspectiva con que se les contempla.
Tanto la organización lógica del espacio exterior, como el desarrollo de una lógica
...