ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Las transformaciones lineales ocurren con mucha frecuencia en el álgebra lineal y otras ramas de las matemáticas.


Enviado por   •  24 de Agosto de 2016  •  Apuntes  •  3.317 Palabras (14 Páginas)  •  368 Visitas

Página 1 de 14

[pic 1]

Instituto Tecnológico Superior de Xalapa

Tema

Unidad V : transformaciones lineales

 Materia:

Algebra lineal

Carrera:

Ingeniería Industrial

Nombre del maestro

Rivera Garcia Martin

Nombre de los alumnos

  • Gamboa Solares Guillermo #127o1198
  • Ordaz Ordaz Magdalena  #127O1260
  • Chávez Blanco Nadia Crystal #127o1180

                                             Xalapa de Enríquez, ver.   A 30 de julio del 2016    


INTRODUCCION

Las transformaciones lineales ocurren con mucha frecuencia en el álgebra lineal y otras ramas de las matemáticas. Éstas tienen una gran variedad de aplicaciones importantes

Una transformación es un conjunto de operaciones que se realizan sobre un vector para convertirlo en otro vector. Se denomina transformación lineal a toda función cuyo dominio e imagen sean espacios vectoriales y se cumplan las condiciones necesarias. Las trasformaciones lineales ocurren con mucha frecuencia en el álgebra lineal y en otras ramas de las matemáticas, tienen una gran variedad de aplicaciones importantes. Las transformaciones lineales tienen gran aplicación en la física, la ingeniería y en diversas ramas de la matemática.  A continuación se explican las propiedades de las transformaciones lineales, sus diferentes tipos, su imagen y el núcleo, y su representación matricial.

INDICE

Transformaciones lineales        

5.1 introducción a las transformaciones lineales        

PROBLEMAS.        

5.2 núcleo e imagen de una transformación lineal        

Problemas        

5.3 la matriz de una transformación lineal        

PROBLEMAS        

5.4 aplicación de las transformaciones lineales: reflexión, dilatación, contracción y rotación        

PROBLEMAS        

Problemario.        


Transformaciones lineales

5.1 introducción a las transformaciones lineales

Ax = b

Donde A es una matriz de m X n, x  Rn y b  Rm. Se pidió encontrar x cuando A y b se conocían. No obstante, esta ecuación se puede ver de otra forma: suponga que A se conoce. Entonces la ecuación Ax = b “dice”: proporcione una x en Rn y yo le daré una b en Rm; es decir, A representa una función con dominio Rn e imagen en Rm. La función que se acaba de definir tiene las propiedades de que A(ax) = aAx si a es un escalar y A(x + y) 5 Ax + Ay. Esta propiedad caracteriza las transformaciones lineales.

Sean V y W espacios vectoriales reales. Una transformación lineal T de V en W es una función que asigna a cada vector v  V un vector único Tv  W y que satisface, para cada u y v en V y cada escalar α

T(u + v) =Tu + Tv

y

T(αv) = αTv

Las únicas transformaciones lineales de en son funciones de la forma f(x)= mx para algún número real m. Así, entre todas las funciones cuyas gráficas son rectas, las únicas que son lineales son aquellas que pasan por el origen. En álgebra y cálculo una función lineal con dominio está definida como una función que tiene la forma f(x) = mx + b. Así, se puede decir que una función lineal es una transformación de en si y sólo si b (la ordenada al origen) es cero.

La transformación cero

Sean V y W espacios vectoriales y defina T: V-W por T v=0 por para todo v en V. Entonces T(v1+v2)=0=0+0=Tv1+Tv2 y T(aV)=0=a0=aTv. En este caso, se denomina la transformación cero.

*La transformación identidad

Sea V un espacio vectorial y defina 1: V—V por 1:v-v para todo v en V. Aquí es obvio 1 que es una transformación lineal, la cual se denomina transformación identidad.

Observaciones sobre notación

  1. Se escribe T: V S W para indicar que T toma el espacio vectorial real V y lo lleva al espacio vectorial real W; esto es, T es una función con V como su dominio y un subconjunto de W como su imagen.
  2. Se escriben indistintamente Tv y T(v). Denotan lo mismo; las dos se leen “T de v”. Esto es análogo a la notación funcional f(x), que se lee “f de x”.
  3. Gran parte de las definiciones y teoremas en este capítulo también se cumplen para los espacios vectoriales complejos (espacios vectoriales en donde los escalares son números complejos).

PROBLEMAS.

Compruebe que son lineales

1. T: R2R2; T[pic 2]

La transformación define un mapa de R2 a R2. Para probar que la transformación es lineal, la transformación debe preservar la multiplicación escalar, la suma y el vector cero.

T: R2R2

Primero prueba que la transformación preserva esta propiedad.

T(x+y)=T(x)+T(y)

Configura dos matrices para comprobar si la propiedad asociativa de la suma se aplica a T.

T   [pic 3]

Suma las dos matrices.

T([x1+y1])

   ([x2+y2])

Aplica la transformación al vector.

T(x+y)=[(x1+y1)]

             [     0     ]

Simplifica el elemento 0;0 multiplicando x1+y1 para obtener x1+y1.

T(x+y)=[x1+y1]

             [   0   ]

Descompón el resultado en 2 matrices agrupando las variables.

T(x+y)=[x1]+[y1]

                            [  0]  [ 0]

...

Descargar como (para miembros actualizados) txt (16 Kb) pdf (583 Kb) docx (2 Mb)
Leer 13 páginas más »
Disponible sólo en Clubensayos.com