Limites Ejersicios
Enviado por 06hemvennoot06 • 18 de Septiembre de 2013 • 2.912 Palabras (12 Páginas) • 281 Visitas
1.- Resolver el limite:
solución:
2.- Resolver el limite
solución:
La solución no es tan inmediata como en el caso anterior, es necesario realizar algunas operaciones antes de aplicar el limite, ya que este limite nos conduce a la indeterminación del tipo cero sobre cero. Para su solución existen dos métodos:
1er Método
Por lo que aplicando la factorización:
2odo Método
Un segundo método, que requiere del conocimiento de uso de fórmulas de derivación, para solucionar este tipo de problemas es la famosa ley de L´Hospital. Para los estudiantes que abordan por segunda vez el tema de límites les será de mayor utilidad, sin embargo, para los estudiantes que lo abordan por primera vez se les sugiere retomar el tema una vez que se hayan cubierto los ejercicios de derivadas. (Video 17MB )
Mediante la regla de L´Hospital
Derivamos tanto el numerador como el denominador, antes de evaluar el limite, obteniendo:
aplicando el limite a esta última expresión obtenemos:
3.- Resolver el siguiente limite:
Solución: Como el limite queda indeterminado debido a la división:
entonces es necesario dividir entre la variable a la mayor potencia tanto en el numerador como en el denominador en este caso entre x7:
4.- Solucionar el siguiente limite:
Solución:
Dividiendo entre x3 por ser variable de mayor potencia tendríamos:
5.- Encontrar el
Solución:
6.- Encontrar la solución de la siguiente expresión:
solución:
Multiplicando por
tenemos:
7.- Encontrar la solución del siguiente limite
Solución: La solución, como podemos analizar, no es tan inmediata ya que nos conduce a la indeterminación de la forma cero entre cero. Al igual que el ejercicio 2 podemos llegar al resultado mediante dos caminos diferentes:
1er Método
Debido a que se puede expresar como
por lo que:
2odo Método
Mediante la regla de L´Hospital tenemos:
por lo que:
8.- Resolver el siguiente limite:
Solución: Como el limite es indeterminado de la forma infinito sobre infinito primero dividiremos entre x100
con lo que:
por lo tanto:
9.- Obtén el siguiente limite:
Solución: Directamente no se puede obtener el resultado por lo que es necesario desarrollar los productos
Aunque aun la solución no es tan inmediata si podemos plantear dos diferentes métodos de solución:
1er Método
Dividiremos entre la variable de mayor potencia:
por lo tanto
2odo Método
Mediante regla de L´Hospital
como esta fracción aun mantiene la indeterminación entonces se deriva nuevamente:
por tanto:
10.- Resolver el siguiente limite:
Solución:
← Solucionario Algebra de Baldor
Limites y Continuidad →
Ejercicios Resueltos Limites y Continuidad
Publicado en 11/01/2010 de profbaptista
Ejercicio Nº1:
Ejercicio Nº2:
Ejercicio Nº3:
Ejercicio Nº4:
Ejercicio Nº5:
Ejercicio Nº6:
Ejercicio Nº7:
Ejercicio Nº8:
Ejercicio Nº9:
Ejercicio Nº10:
Ejercicio Nº11:
Ejercicio Nº12:
Ejercicio Nº13:
Ejercicio Nº14:
Ejercicio Nº15:
Ejercicio Nº16:
Límite y Continuidad de Funciones (página 2)
Enviado por Eleazar José García
Partes: 1, 2
Tomando , luego, para esos valores de y los números x que pertenecen al intervalo abierto verifican la proposición(A). En efecto, tomando cualquier x en el intervalo anterior, por ejemplo x = 1,9976 se tiene:
entonces
Esto verifica la proposición (A) para el valor específico tomado para x.
2) Demostrar usando la definición de límite que
Como la función está definida en cualquier intervalo abierto que contenga al 1, excepto en el número 1, podemos aplicar la definición para realizar la demostración. En efecto,
si entonces (B)
si entonces
si entonces
si entonces
si entonces
Ahora, cuando x se acerca a 1, x +2 se acerca a 3, luego, entonces, por lo tanto, De la proposición (B) se obtiene que, si entonces Si tomamos se cumple la proposición (B), lo que demuestra que
Ejercicios propuestos 1.
Demuestre, aplicando la definición que el límite es el número indicado.
1)
2)
3)
4)
Con la finalidad de calcular los límites de funciones de una manera
...