Solubilidad
Enviado por rafaelx • 3 de Diciembre de 2013 • 5.626 Palabras (23 Páginas) • 328 Visitas
Producto de solubilidad
El producto de solubilidad o producto iónico de un compuesto ionico es el producto de las concentraciones molares (de equilibrio) de los iones constituyentes, cada una elevada a la potencia del coeficiente estequiométrico en la ecuación de equilibrio: 5yu
CmAn ↔ m Cn+ + n Am-
Donde C representa a un catión, A a un anión y m y n son sus respectivos índices estequiométricos. Por tanto, atendiendo a su definición su producto de solubilidad se representa como:
Kps = [Cn+]m [Am-]n
El valor de Kps indica la solubilidad de un compuesto iónico, es decir, cuanto menor sea su valor menos soluble será el compuesto. También es fácilmente observable que si aumentamos la concentración de uno de los componentes o iones (por ejemplo, añadiendo una sustancia que al disociarse produce ese mismo ion) y alcanzamos de nuevo el equilibrio, la concentración del otro ion se verá disminuida (lo que se se conoce como efecto ion común).
Hay dos formas de expresar la solubilidad de una sustancia: como solubilidad molar, número de moles de soluto en un litro de una disolución saturada (mol/L); y como solubilidad, número de gramos de soluto en un litro de una disolución saturada (g/L). Todo esto ha de calcularse teniendo en cuenta una temperatura que ha de permanecer constante y que suele ser la indicada en las condiciones estándar o de laboratorio (P=101 kPa, T=25ºC).
Tampón químico
De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Para otros usos de este término, véase Tampón.
Un tampón, buffer, solución amortiguadora o solución reguladora es la mezcla en concentraciones relativamente elevadas de un ácido débil y su base conjugada, es decir, sales hidrolíticamente activas. Tienen la propiedad de mantener estable el pH de una disolución frente a la adición de cantidades relativamente pequeñas de ácidos o bases fuertes. Este hecho es de vital importancia, ya que meramente con un leve cambio en la concentración de hidrogeniones en la célula se puede producir un paro en la actividad de las enzimas.
Se puede entender esta propiedad como consecuencia del efecto ion común y las diferentes constantes de acidez o basicidad: una pequeña cantidad de ácido o base desplaza levemente el equilibrio ácido-base débil, lo cual tiene una consecuencia menor sobre el pH.1
Cada sistema buffer tiene su propio rango efectivo de pH, el cual dependerá de la constante de equilibrio del ácido o base empleado. Son importantes en el laboratorio y en la industria, y también en la química de la vida. Tampones típicos son el par amoníaco-catión amonio, ácido acético-anión acetato, anión carbonato-anión bicarbonato, ácido cítrico-anión citrato o alguno de los pares en la disociación del ácido fosfórico.
Índice
[ocultar]
• 1 Mecanismo de actuación de las soluciones tampón
• 2 Cálculo del pH de disoluciones tampón
• 3 Sistemas tampón fisiológicos
o 3.1 Niveles de pH en el cuerpo humano
o 3.2 Sistemas tampón en el organismo
3.2.1 Tampón bicarbonato
3.2.2 Tampón fosfato
3.2.3 Tampón hemoglobina
3.2.4 Aminoácidos y proteínas
• 4 Aplicaciones industriales de las soluciones tampón
• 5 Experiencias con soluciones tampón
• 6 Referencias
• 7 Enlaces externos
Mecanismo de actuación de las soluciones tampón[editar • editar código]
Para poder entender con claridad el mecanismo que utiliza el organismo para evitar cambios significativos de pH, pondremos un ejemplo de actuación del tampón de más importancia en el organismo, el equilibrio de ácido carbónico (H2CO3) y bicarbonato (HCO3-), presente en el líquido intracelular y en la sangre. Como producto del metabolismo se produce CO2 que al reaccionar con las moléculas de agua produce ácido carbónico, un compuesto inestable que se disocia parcialmente y pasa a ser bicarbonato según el siguiente equilibrio:
CO2 + H2O H2CO3 HCO3- + H+
Entonces, el bicarbonato resultante se combina con los cationes libres presentes en la célula, como el sodio, formando así bicarbonato sódico (NaHCO3), que actuará como tampón ácido. Supongamos que entra en la célula un ácido fuerte, por ejemplo, ácido clorhídrico (HCl):
HCl + NaHCO3 → NaCl + CO2 + H2O
Como se puede ver en la anterior reacción el efecto ácido clorhídrico queda neutralizado por el bicarbonato de sodio y resultan como productos sustancias que no provocan cambios en el pH celular y lo mantienen en su valor normal, que es 7,4.
Cálculo del pH de disoluciones tampón[editar • editar código]
Frecuentemente se utiliza la ecuación de Henderson-Hasselbalch para el cálculo del pH en soluciones reguladoras. Sin embargo, debe aclararse que esta ecuación no es aplicable en todos los casos, ya que para su deducción se realiza una serie de suposiciones. Esta ecuación suele proporcionar resultados incorrectos cuando las concentraciones del ácido y su base conjugada (o de la base y su ácido conjugado) son bajas. Para el cálculo del pH, se debe saber el pKa del ácido y la relación entre la concentración de sal y ácido, como se observa a continuación
Recordemos que pKa de un ácido débil se obtiene a partir de su constante de acidez (Ka) y es específico para cada ácido. Supongamos que disponemos de una determinada cantidad de un ácido débil, por ejemplo, ácido láctico de concentración 10 mM. Sabemos, que la concentración de su sal conjugada, el lactato, es de 2 mM y que el pKa ácido del ácido láctico és 3,86. Por tanto, podemos calcular el pH del ácido láctico en una solución acuosa sin ningún tipo de sistema tamponador con la ecuación de Henderson-Hasselbalch:
CH3-CHOH-COOH CH3-CHOH-COO- + H+
pH = 3,86 + log (2 mM/ 10mM) = 3,86 - 0,7 = 3,16
Por tanto, el pH de una solución acuosa de ácido láctico de concentración 10 mM, sin la intervención de ningún tampón es 3,16. Es decir que si esto se produjese en el líquido intracelular y no existieran las soluciones amortiguadoras su pH estándar de 7,4 bajaría bruscamente hasta 3,16. Sin embargo, esto no ocurre en nuestro organismo gracias a los tampones químicos.
Si reflexionamos sobre la ecuación de Henderson-Hasselbalch se deduce que el pH del sistema amortiguador depende de la proporción relativa entre sal y ácido, y no de sus concentraciones absolutas. Es decir que si vamos añadiendo agua al sistema variarán las concentraciones absolutas de cada sustancia, pero no su cociente de concentraciones. No obstante, si la dilución es muy grande, el equilibrio del ácido y su sal conjugada se desplaza hacia los productos
...