Trazos de péndulo
Enviado por • 15 de Octubre de 2012 • Trabajo • 1.690 Palabras (7 Páginas) • 575 Visitas
Trazos de péndulo
El péndulo puede hacer trazos como estos que les llamaremos 1:1
El primer trazo es un vaivén sobre el mismo camino, el péndulo se mueve en un plano. Los otros trazos se hacen cuando el péndulo ya no se restringe a un plano y son más interesantes.
Otro péndulo hace estos trazos que llamaremos 2:1
Trazos 3:2 Trazos 4:3
La razón de esos nombres con números y cómo hacer péndulos que hagan esos trazos están en las siguientes páginas:
Algo más sobre péndulo dibujante
El tiempo que tarda un péndulo en completar una oscilación, su periodo, depende de su longitud. Un péndulo corto tiene periodo breve y un péndulo largo tiene periodo grande.
Es posible hacer un péndulo que sea largo y corto al mismo tiempo.
Este péndulo tiene una cuerda con forma de Y. Si consideramos la longitud total L1, el péndulo tiene un periodo largo, pero sólo puede oscilar en una dirección, que es hacia nosotros y hacia atrás. Digamos que esa es la dirección x
La parte de la cuerda simple, de longitud L2, sí puede oscilar en la dirección que vemos hacia nuestra derecha e izquierda, es la dirección y. En esa dirección el periodo es más breve que en
otra pues L2 es menor a L1. Así el péndulo tiene dos periodos, uno largo en la dirección x, y uno corto en la dirección y. |El trazo que dejará la arena es interesante si estos dos periodos tienen una razón entre sí quesea de números enteros. Por ejemplo, si el periodo largo es doble del corto, la razón es 2:1 y los trazos correspondientes son los de las fotos con ese nombre en la página "Trazos de péndulo.
Los trazos que se obtienen se conocen como figuras de Lissajous, por el científico francés que las observó con la vibración de diapasones en el siglo XIX.
Si la razón entre periodos no es de números enteros el trazo que resulta, como este, no se cierra sobre sí mismo en un lapso breve.
Nota cómo el trazo está confinado en una región rectangular. Siempre es así, pero aquí se hace notar más. ¿Puedes lograr un patrón confinado en un cuadrado?
¿Cómo es el péndulo que hace los trazos que llamamos 1:1 (línea recta, elipse y círculo)?
Cómo hacer el péndulo dibujante
El recipiente mostrado se obtuvo al cortar una botella de plástico. Lo puedes hacer, con mucho cuidado, con un cutter o navaja. El orificio de la tapa y los del borde para la cuerda se pueden hacer, también con precaución, con un clavo calentado al fuego sostenido con pinzas. El diámetro del orificio depende de lo fino del grano. Para arena comparable al azúcar común, un diámetro de entre 1 y 2 mm es adecuado. Las cuerdas se sujetan de dos puntos altos en un soporte firme, puede ser el marco de una puerta o el techo.
Para obtener figuras de Lissajous buenas la amplitud máxima no debe ser muy grande, por ejemplo, para una longitud de 2 m, es buena una amplitud, o ancho de oscilación, de unos 10 o 15 cm.
Por eso es mejor que la longitud total de la cuerda sea grande, desde el techo hasta el piso es posible una longitud L1 de aproximadamente 2.5 m.
Lo anterior también es porque no conviene que L2 sea muy corta, pues si es así su amplitud
también se ve reducida y los trazos no se aprecian bien.
Se debe cuidar que el nudo en donde se unen las tres cuerdas que forman la Y sea muy firme y no sea corredizo
Las longitudes y los periodos
El periodo de un péndulo es proporcional a la raíz cuadrada de su longitud, entonces podemos decir que la longitud es proporcional al cuadrado del periodo. Si deseamos que un péndulo haga los trazos 2:1, el periodo en y debe ser doble del periodo en x. La razón de periodos es 2:1, pero la razón de longitudes es el cuadrado de ella, es decir 4:1. Es decir L1 debe ser 4 veces el valor de L2. por ejemplo si L1 es de 2.40 m, L2 es la cuarta parte, 60 cm.
Para los trazos 3:2 la razón de longitudes es también el cuadrado de esos números, 9:4. Para L1 de 2.4 m, la longitud L2 es 4/9 de 2.40 m, es de 1.07 m.
De la misma manera, para los trazos 4:3, la longitud de L2 es 9/16 de L1. Para L1 de 2.40 m, L2 es 1.35 m.
¿Puedes hacer las figuras 3:1?
Pero ojo, para cualquier configuración lo importante es la razón entre los periodos. Al hacer el péndulo, los valores calculados de longitudes deben tomarse solamente como valores iniciales, los valores definitivos los vas a encontrar por ensayo y error, alargando y acortando las cuerdas hasta que los periodos queden en la razón buscada. Puedes usar un cronómetro para medir los periodos y una calculadora para encontrar la razón entre ellos. Recuerda
que para aumentar la razón hay que acortar L2 sin cambiar L1, pero eso sí implica alargar la cuerda superior, la que tiene forma de V. ¡Paciencia!
Eso es porque los cálculos mostrados están basados en la suposición de que tenemos un péndulo simple idealizado, de cuerda sin masa y un objeto pequeñito suspendido con oscilaciones en x independientes de las de y. En realidad la cuerda tiene masa, el recipiente no es tan pequeño y las oscilaciones en x y y no son tan independientes.
Sitúa un papel grande debajo del péndulo
...